Mean Field for the Stochastic Blockmodel: Optimization Landscape and Convergence Issues

Soumendu Sundar Mukherjee, Purnamrita Sarkar, Y. X. Rachel Wang, and Bowei Yan
Indian Statistical Institute, Kolkata; University of Texas, Austin; University of Sydney; and University of Texas, Austin

Stochastic Blockmodel
- K-block Stochastic Blockmodel (SBM) on n nodes (Holland et al., 1983) - Community labels: $n \times K$ membership matrix Z, Z_{i}. is the community membership vector of node i and has a Multinomial $(1 ; \pi)$ distribution, independently of the other rows. - Adjacency matrix $A \in\{0,1\}^{n \times n}$, $A_{i j} \mid\left(Z_{i a}=1, Z_{j b}=1\right) \sim \operatorname{Bernoulli}\left(B_{a b}\right), \quad i \neq j, \quad A_{i j}=A_{j i}$ - Estimate both Z and the parameters $\pi_{a}, B_{a b}, 1 \leq a, b \leq K$.

Mean field approximation
$\log P(A ; B, \pi) \stackrel{\text { (Jensen) }}{\geq} \sum_{Z} \log \left(\frac{P(A, Z ; B, \pi)}{\psi(Z)}\right) \psi(Z) \quad \forall \psi$ prob. on \mathcal{Z}.

- Equality holds for $\psi^{*}(Z)=P(Z \mid A ; B, \pi)$.
- Mean field approximation with $\Psi_{M F} \equiv\left\{\psi: \psi\left(z_{1}, \ldots, z_{n}\right)=\prod_{j=1}^{n} \psi_{j}\left(z_{j}\right)\right\}$.
$\ell_{M F}(\psi, B, \pi)=\sum_{i<j, a, b} \psi_{i a} \psi_{j b}\left(A_{i j} \log B_{a b}+\left(1-A_{i j}\right) \log \left(1-B_{a b}\right)\right)-\mathrm{KL}\left(\psi \| \pi^{\otimes n}\right)$ Coordinate ascent, alternate between maximizing $\ell_{M F}(\psi, B, \pi)$ for MF parameters and model parameters
Pros: Computationally fast, can easily be modified to allow more complex models. Cons: Suffers from many local optima.
\qquad
$=K=3, B=0.5 \cdot\left[\begin{array}{ccc}1 & 0.4 & 0.1 \\ 0.4 & 1 & 0.1 \\ 0.1 & 0.1 & 1\end{array}\right]$,
$\pi=(1 / 3,1 / 3,1 / 3), n=600$.
$=$ truth; $\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right] ;\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right] ;(1$,

Related work

SBM (Celisse et al. 2012, Bickel et al. 2013)
Reparametrize $B_{a b}=\rho_{n} S_{a b}, \rho_{n} \rightarrow 0 . n \rho_{n}$ is roughly the average degree.
In the semi-dense regime $\rho_{n} n / \log n \rightarrow \infty$, closeness of m
variational likelihood

- Asymptotic equivalence of variational estimates and
- Batch coordinate ascent updates (BCAVI), alternate between updating all ψ and the model parameters When the initialization is sufficiently close to the truth, $\ell\left(\psi^{s+1}, Z\right) \leq$ minimax error $+c_{n} \ell\left(\psi^{s}, Z\right)$, $c_{n}=o(1)$
This paper: a more complete characterization for simple setting
- $K=2, \pi=1 / 2, B_{11}=B_{22}=p, B_{12}=B_{21}=q, p>q . p \asymp q \asymp \rho_{n}, \rho_{n} \rightarrow 0$ at some rate.

BCAVI updates for $K=2$

Given $\psi^{(s-1)} \in[0,1]^{n}$, update $p^{(s)}$ and $q^{(s)}$ by averaging the entries of A using the soft membership vector $\psi^{(s-1)}$
Given $p^{(s)}, q^{(s)}$, update $\psi^{(s)}$

$$
\xi_{i}^{(s+1)}:=\log \frac{\psi_{i}^{(s+1)}}{1-\psi_{i}^{(s+1)}}=4 t^{(s)} \sum_{j \neq i}\left(\psi_{j}^{(s)}-\frac{1}{2}\right)\left(A_{i j}-\lambda^{(s)}\right),
$$

$\psi_{i}^{(s+1)}=g\left(\xi_{i}^{(s+1)}\right), \quad g$ is the sigmoid function,
where $t^{(s)}=\frac{1}{2} \log \left(\frac{p^{(s)}\left(1-q^{(s)}\right.}{q^{(s)}\left(1-p^{(s)}\right)}\right), \lambda^{(s)}=\frac{1}{2 t^{(s)}} \log \left(\frac{1-q^{(s)}}{1-p^{(s)}}\right)$.
Let p^{*}, q^{*} (corresponding λ^{*}, t^{*}) be the true parameters. Our analysis has two parts:

- Knowing p^{*}, q^{*}, updating ψ alone.
- Full updates with unknown p^{*}, q^{*}.
- Let $\mathbb{E}(A \mid Z)=Z B Z^{\top}-p^{*} I=: P-p^{*} I, M=P-p^{*} I-\lambda^{*}(J-I)$. Key decomposition:

$$
\begin{aligned}
\xi^{(s)} & =4 t(A-\lambda(J-I))\left(\psi^{(s-1)}-\frac{1}{2} \mathbf{1}\right) \\
& =\underbrace{4 t M\left(\psi^{(s-1)}-\frac{1}{2} \mathbf{1}\right)}_{\text {population version }}+\underbrace{4 t(A-\mathbb{E}(A \mid Z))\left(\psi^{(s-1)}-\frac{1}{2} \mathbf{1}\right)}_{\text {sample noise }},
\end{aligned}
$$

M has a simple eigendecomposition:

$$
w_{1}=n \alpha_{+}-\left(p^{*}-\lambda^{*}\right) \text { with } \alpha_{+}=\frac{p^{*}+q^{*}}{2}-\lambda^{*}, \quad \text { eigenvector } u_{1}=1
$$

$$
\begin{aligned}
& w_{1}=n \alpha_{+}-(p-\lambda) \text { witn } \alpha_{+}=\overline{2}-\lambda, \quad \text { eigenvector } u_{1}=1 \\
& w_{2}=n \alpha_{-}-\left(p^{*}-\lambda^{*}\right) \text { with } \alpha_{-}=\frac{p^{*}-q^{*}}{2}, \quad \text { eigenvector } u_{2}=\mathbf{1}_{\mathcal{C}_{1}}-\mathbf{1}_{\mathcal{C}_{2}}
\end{aligned}
$$

$$
w_{j}=-\left(p^{*}-\lambda^{*}\right), j=3, \ldots
$$

- Project $\psi^{(s)}$ on $u_{1}, u_{2} . \zeta_{i}^{(s)}=\left\langle\psi^{(s)}, u_{i}\right\rangle /\left\|u_{i}\right\|^{2}=\left\langle\psi^{(s)}, u_{i}\right\rangle / n$, for $i=1,2$.
$\psi^{(s)}=\zeta_{1}^{(s)} u_{1}+\zeta_{2}^{(s)} u_{2}+v^{(s)}$.
$\xi_{i}^{(s+1)}=4 \operatorname{tn}\left(\left(\zeta_{1}^{(s)}-\frac{1}{2}\right) \alpha_{+}+\sigma_{i} \zeta_{2}^{(s)} \alpha_{-}\right)+4 t w_{3}\left(\left(\zeta_{1}^{(s)}-\frac{1}{2}\right)+\sigma_{i} \zeta_{2}^{(s)}+v_{i}^{(s)}\right)$
$=: n a_{\sigma_{i}}^{(s)}+b_{i}^{(s)}, \quad \sigma_{i}= \pm 1$
Key ψ to consider $\frac{1}{2} \mathbf{1}, \mathbf{1}, \mathbf{0}, \mathbf{1}_{\mathcal{C}_{1}}, \mathbf{1}_{\mathcal{C}_{2}}$.

Known p^{*}, q^{q}

Proposition 1 (Saddle point) $\psi=\frac{1}{2} 1$ is a saddle point of the population mean field log-likelihood when p^{*} and q^{*} are known, for all n large enough.
Theorem 1 (Population behavior) The limit behavior of the population BCAVI updates is characterized by the signs of α_{+}and $a_{ \pm 1}^{(0)}$. Assume that $\left|n a_{ \pm 1}^{(0)}\right| \rightarrow \infty, \rho_{n} \rightarrow 0$. Define $\ell\left(\psi^{(0)}\right)=\mathbb{1}\left(a_{+1}^{(0)}>0\right) \mathbf{1}_{\mathcal{C}_{1}}+\mathbb{1}\left(a_{-1}^{(0)}>0\right) \mathbf{1}_{\mathcal{C}_{2}}$. Then, we have

$$
\frac{\left\|\psi^{(1)}-\ell\left(\psi^{(0)}\right)\right\|^{2}}{n}=O\left(\exp \left(-\Theta\left(n \min \left\{\left|a_{+1}^{(0)}\right|,\left|a_{-1}^{(0)}\right|\right\}\right)\right)\right)=o(1) .
$$

We also have for any $s \geq 2$,

$$
\frac{\left\|\psi^{(s)}-\ell\left(\psi^{(0)}\right)\right\|^{2}}{n}= \begin{cases}O\left(\exp \left(-\Theta\left(n t \alpha_{-}\right)\right)\right), & \text {If } a_{+1}^{(0)} a_{-1}^{(0)}<0 \\ O\left(\exp \left(-\Theta\left(n t \alpha_{+}\right)\right),\right. & \text {If } a_{1+1}^{(0)} a_{-1}^{(0)}>0\end{cases}
$$

For example, $a_{+1}^{(0)} a_{-1}^{(0)}<0, \ell\left(\psi^{(0)}\right)=\mathbf{1}_{\mathcal{C}_{1}}$ or $\mathbf{1}_{\mathcal{C}_{2}} ; a_{+1}^{(0)} a_{-1}^{(0)}>0, \ell\left(\psi^{(0)}\right)=\mathbf{1}$ or $\mathbf{0}$.
For example, $a_{+1}^{(0)} a_{-1}^{(0)}<0, \ell\left(\psi^{(0)}\right)=\mathbf{1}_{\mathcal{C}_{1}}$ or $\mathbf{1}_{\mathcal{C}_{2}} ; a_{+1}^{(0)} a_{-1}^{(0)}>0, \ell\left(\psi^{(0)}\right)=\mathbf{1}$ or $\mathbf{0}$. Consider the sample updates with iid initialization $\psi^{(0)}$.
Theorem 2 (Sample behavior) For $s \geq 1$, the same conclusion holds for the sample BCAVI updates with high probability as long as $n\left|a_{ \pm 1}^{(0)}\right| \gg \max \left\{\sqrt{n \rho_{n}}\left\|\psi^{(0)}-\frac{1}{2}\right\|_{\infty}, 1\right\}$, $B C A V$
$\sqrt{n \rho_{n}}=\Omega(\log n)$ and $\psi^{(0)}$ is independent of A.

Remark 1 The above condition is not satisfied when $\mathbb{E} \psi_{i}^{(0)}=1 / 2$. In this case, $\zeta_{1}^{(0)}-1 / 2=$ $O_{P}\left(n^{-1 / 2}\right), \zeta_{2}^{(0)}=O_{P}\left(n^{-1 / 2}\right), n\left|a_{ \pm 1}^{(0)}\right|=O_{P}\left(\sqrt{n} \rho_{n}\right)$.
(A)
(B)
(C)

Figure: Robustness to estimation error in p, q

Known p^{*}, q^{*}

> " x axis has different p values and y axis has different q values.
> " The lines represent p^{*} and q^{*}. - The numbers represent average accuracy from 50 random initializations Unif(0,1).
> " $p^{*}=0.5, q^{*}=0.1, n=400$

Unknown p^{*}, q^{*}

Proposition 2 (Optimization landscape) For n large enough, (ψ, p, q) $\left(\frac{1}{2} 1, \frac{p^{*}+q^{*}}{2}, \frac{p^{*}+q^{*}}{2}\right)$ is a strict local maximum of the population mean field log-likelihood. Proposition 3 Consider the population updates of BCAVI with unknown p^{*}, q^{*} and $\rho_{n} \rightarrow 0, n \rho_{n} \rightarrow \infty$. Let $(\psi, \tilde{p}, \tilde{q})$ be a stationary point of the population mean field $\rho_{n} \rightarrow 0, n \rho_{n} \rightarrow \infty$. Let (ψ, \tilde{p}, q) be a stationary point of the population mean field
log-likelihood. If $\psi=\psi_{u}+\psi_{u^{\perp}}$, where $\psi_{u} \in \operatorname{span}\left\{u_{1}, u_{2}\right\}$ and $\psi_{u^{\perp}} \perp \operatorname{span}\left\{u_{1}, u_{2}\right\}$, then log-likelihood. If $\psi=\psi_{u}+\psi_{u}$,
$\left\|\psi_{u} \perp\right\|=o(\sqrt{n})$ as $n \rightarrow \infty$.
Lemma 3 (Futility of random initializations) Consider the initial distribution $\psi_{i}^{(0)} \stackrel{i i d}{\sim} f_{\mu}$ where f is a distribution supported on $(0,1)$ with mean μ. If μ is bounded away from 0 and 1 and $n \rho_{n} \rightarrow \infty$, then $\psi_{i}^{(s)}=\frac{1}{2}+O_{P}\left(\sqrt{\left.\rho_{n} / n\right)}\right.$ for $s \geq 1$, where $\psi^{(s)}$ is computed using the full updates.
Lemma 4 (Initializations correlated with truth) Consider an initial $\psi^{(0)}$ such that

$$
\zeta_{1}=\frac{\mu_{1}+\mu_{2}}{2}+O_{P}(1 / \sqrt{n}) \quad \zeta_{2}=\frac{\mu_{1}-\mu_{2}}{2}+O_{P}(1 / \sqrt{n}) .
$$

If μ_{1}, μ_{2} are bounded away from 0 and 1 and satisfy

$$
\left|\mu_{1}-\mu_{2}\right|>\max \left(2\left|\mu_{1}+\mu_{2}-1\right|+O_{P}\left(\rho_{n} / \sqrt{n}\right),\left(\frac{\rho_{n} \log n}{n\left(p^{*}-q^{*}\right)^{2}}\right)^{1 / 3}\right)
$$

and $n \rho_{n} \rightarrow \infty$, then $\psi^{(1)}=\mathbf{1}_{\mathcal{C}_{1}}+O_{P}(\exp (-\Omega(\log n)))$ or $\mathbf{1}_{\mathcal{C}_{2}}+O_{P}(\exp (-\Omega(\log n)))$.

Average distance between the estimated ψ and the true Z with respect to c_{0}, where $\mathbb{E}\left(\psi^{(0)}\right)=\left(1 / 2+c_{0}\right) \mathbf{1}_{\mathcal{C}_{1}}+\left(1 / 2-c_{0}\right) \mathbf{1}_{\mathcal{C}_{2}}$.

Generalizations -

Figure: Convergence from random initialization for $K=3$ with known p,
$K=3, p^{*}=0.5, q^{*}=0.01$, equal class, $n=450$, initialized with Dirichlet $(0.1,0.1,0.1)$.
For each iteration (each row) we represent the node membership with different colors. the node membership with different colos.
All stationary points lie in the span of $\left\{\mathbf{1}_{\mathcal{C}_{1}}, \mathbf{1}_{\mathcal{C}_{2}}, 1_{\mathcal{C}_{3}}\right\}$.

- We conjecture that the number of stationary points grow exponentially in K. Unknown p^{*}, q^{*} and random initializations lead to $(1 / 3,1 / 3,1 / 3)$.

