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Stochastic Blockmodel

= K-block Stochastic Blockmodel (SBM) on n nodes (Holland et al., 1983)

= Community labels: n x K membership matrix Z , Z,. is the community membership vector of node ¢
and has a Multinomial(1; ) distribution, independently of the other rows.

= Adjacency matrix A € {0, 1}"**" |
Az’j’(Zm — 1, Zjb — 1) ~ Bernoulli(Bab), 7 7é j, AZ] — Aﬂ

« Estimate both Z and the parameters m,, By, 1 < a,b < K.

Mean field approximation

(Jensen) (P(A, 7 B, 7-‘-)
log
A

log P(A; B,w) > (7} >¢(Z) V1) prob. on Z.

= Equality holds for v*(Z) = P(Z|A; B, «).
- Mean field approximation with Wy p = {9 : (21, ..., 20) = [1/21 ¥j(25) }-

Curp(, B,m) = > igthin(Aijlog Bay + (1

1<4,a,b

— Ayj)log(1 — Ba)) — KL(¢|[7*")

- Coordinate ascent, alternate between maximizing £y;r(¢), B, w) for MF parameters
and model parameters

« Pros: Computationally fast, can easily be modified to allow more complex models.

« Cons: Suffers from many local optima.
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Related work

- SBM (Celisse et al. 2012, Bickel et al. 2013)

= Reparametrize B, = pnSyp, pn — 0. npy is roughly the average degree.

= In the semi-dense regime p,n/logn — oo, closeness of maximum likelihood and maximum
variational likelihood

= Asymptotic equivalence of variational estimates and MLE

= Positive result from Zhang and Zhou 2017
= Batch coordinate ascent updates (BCAVI), alternate between updating all ) and the model parameters
- When the initialization is sufficiently close to the truth, £(1/**1, Z) < minimax error + ¢, 0(1%, Z),
cn = o(1)
« This paper: a more complete characterization for simple setting.
- K =2, m=1/2, Bj1 =By =p, Bio= DBy =q,p>q. p<q= pn, pn — 0 at some rate.

BCAVI updates for K = 2

- Given ¢*=1 € [0, 1]", update p'*) and ¢'*) by averaging the entries of A using the soft
membership vector 15~ 1),
- Given p'*), ¢'®), update 1'®),

(s+1) ID(SM (s) s) 1 (s)
=] ) _4ts§ Y V(A — N8
“ o 1 — %(SH) ji ) 2)( : !

o = g(g™),
) (5)(1—qo) ) 1—g®
where t*) = Llog (5@)&1;3);), A\ = —log (1—2(8))

Let p*, ¢* (corresponding \*, t*) be the true parameters. Our analysis has two parts:

g is the sigmoid function,

« Knowing p*, ¢, updating % alone.

« Full updates with unknown p*, ¢*.

- Llet E(A|Z)=ZBZ" —p*I =P —p*I, M =P —p*I — \*(J —I). Key
decomposition:

€0 = 4t(A — (T — D)~ -1

=AM (0 — 1)+ (A BA|Z)) (9 ~ 1),

J

v

TV
population version sample noise

= M has a simple eigendecomposition:

_ “+q" . .
wy = nay — (p° — A7) with a; = b > T\ . eltgenvector u; =1
wy =na_ — (p* — A") with a_ = S ergenvector us = 1¢, — 1¢,

w;=—(P" —X), 7=3,...,n
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 Project ¢*) on uy, us. ¢ = (¥, w;)/||wi])* = (), w) [, for i = 1,2.
¢<S> — Q(S)lél + CSS)UQ + ?}<S>.
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« Key 1) to consider %1, 1,0,1¢, 1.

Proposition 1 (Saddle point) ¢y = %1 is a saddle point of the population mean field
log-likelihood when p* and q* are known, for all n large enough.

Theorem 1 (Population behavior) The limit behavior of the population BCAVI updates

is characterized by the signs of o, and ag. Assume that ]na(ﬂ] — 00, pn — 0. Define

(V) = ﬂ(aﬂ > 0)1¢, + ]l(a(_o% > 0)1¢,. Then, we have
[ — L))

n
We also have for any s > 2,

| — ()2 [O(exp(—=O(nta_))), Ifaa, <0

O(nta)
= _ 0) (0
n O(exp(—O(ntay)), Ifalja; > 0.
)

= O(exp(—O(nmin{|a'}], [a"}]}))) = o(1).

\

For example, aﬁa@ < 0, E(w@) = 1¢, or 1¢,; a(fia(_ol > (), E(w(())) —1 or 0.

For example, aﬂa(_o% <0, () = 1¢, or 1¢;; aﬂa@ > 0, £(¢\") = 1 or 0. Consider the
sample updates with iid initialization 1),

Theorem 2 (Sample behavior) For s > 1, the same conclusion holds for the sample
BCAVI updates with high probability as long as n\ag] > max{/mon||v? — 3|, 1},
J1epn = Qlogn) and \°) is independent of A.

Remark 1 The above condition is not satisfied when IE@DZ(O) = 1/2. In this case, <1(0> —1/2 =
Op(n™'1%), " = Op(n™17?), nlai| = Or(v/mpn)
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Figure: p* = 0.4, ¢" = 0.025, n = 200, 5000 initializations with iid Beta(ca, 8): (A), (C) represent
population behavior and (B), (D) represent the corresponding sample behavior.

' ' = X axis has different p values and y axis
{ | has different ¢ values.

« The lines represent p* and ¢*.

= The numbers represent average
accuracy from 50 random initializations

Unif(0,1).
cpt =05, ¢" = 0.1, n = 400
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Figure: Robustness to
estimation error in p, q.

Unknown p*, ¢*

Proposition 2 (Optimization landscape) For n
(é%{]- ]7*251]* ])*2;11*

large enough, (Y,p,q) =
) is a strict local maximum of the population mean field log-likelihood.

Proposition 3 Consider the population updates of BCAVI with unknown p*, q¢* and
pn — 0, np, — oo. Let (Y, p,q) be a stationary point of the population mean field
log-likelihood. If v = 1), + 1,1, where 1, € span{uy, us} and 1, 1 span{uy,us}, then
[¥1]| = o(y/n) as n — oo.

Lemma 3 (Futility of random initializations) Consider the initial distribution
@DZ@ " f. where f is a distribution supported on (0, 1) with mean p. If i is bounded

away from O and 1 and np, — oo, then wz@ =14 0p(\/pn/n) for s > 1, where '*) is
computed using the full updates.

Lemma 4 (Initializations correlated with truth) Consider an initial 1) such that

o =1 ;r B op)vn) =" ; L Op(1/ V).

If 111, 1o are bounded away from 0 and 1 and satisfy

nlogn 1/3
iy = o] > max (2u1+u21+0p(pn/\/ﬁ),< 6 )2> )

and np, — oo, then YW = 1¢ + Op(exp(—Q(logn))) or 1¢, + Op(exp(—Q(logn))).
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058 & p = p=0.2, g=0.05|.

distance from truth
[} [}
La %
I
r

=]
e
-
f"-.-
-
P
o

=
-

Average distance between the estimated ?) and the true Z with respect to ¢y, where
E(p") = (1/2 + ¢p)1e, + (1/2 — o) 1e,.

Generalizations - K > 2

« K =3, p" =0.5, ¢ =0.01, equal class,
n = 450, initialized with
Dirichlet(0.1,0.1,0.1).

« For each iteration (each row) we represent
the node membership with different colors.

=« All stationary points lie in the span of
{1c), ¢, 1c, -

« We conjecture that the number of
stationary points grow exponentially in /.
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Figure: Convergence from random

nitialization for K — 3 with known p. q. = Unknown p*, ¢* and random initializations

lead to (1/3,1/3,1/3).




