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Stochastic Blockmodel
•K-block Stochastic Blockmodel (SBM) on n nodes (Holland et al., 1983)

• Community labels: n×K membership matrix Z , Zi· is the community membership vector of node i
and has a Multinomial(1; π) distribution, independently of the other rows.

• Adjacency matrix A ∈ {0, 1}n×n ,
Aij|(Zia = 1, Zjb = 1) ∼ Bernoulli(Bab), i 6= j, Aij = Aji

• Estimate both Z and the parameters πa, Bab, 1 ≤ a, b ≤ K.

Mean field approximation

logP (A;B, π)
(Jensen)
≥

∑
Z

log
(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z) ∀ψ prob. on Z.

• Equality holds for ψ∗(Z) = P (Z|A;B, π).
• Mean field approximation with ΨMF ≡ {ψ : ψ(z1, . . . , zn) = ∏n

j=1ψj(zj)}.

`MF (ψ,B, π) =
∑
i<j,a,b

ψiaψjb(Aij logBab + (1− Aij) log(1−Bab))− KL(ψ||π⊗n)

• Coordinate ascent, alternate between maximizing `MF (ψ,B, π) for MF parameters
and model parameters

•Pros: Computationally fast, can easily be modified to allow more complex models.
•Cons: Suffers from many local optima.

•K = 3, B = 0.5 ·
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Related work
• SBM (Celisse et al. 2012, Bickel et al. 2013)

• Reparametrize Bab = ρnSab, ρn→ 0. nρn is roughly the average degree.
• In the semi-dense regime ρnn/ log n→∞, closeness of maximum likelihood and maximum
variational likelihood

• Asymptotic equivalence of variational estimates and MLE
• Positive result from Zhang and Zhou 2017

• Batch coordinate ascent updates (BCAVI), alternate between updating all ψ and the model parameters
• When the initialization is sufficiently close to the truth, `(ψs+1, Z) ≤ minimax error + cn`(ψs, Z),
cn = o(1)

• This paper: a more complete characterization for simple setting.
• K = 2, π = 1/2, B11 = B22 = p, B12 = B21 = q, p > q. p � q � ρn, ρn→ 0 at some rate.

BCAVI updates for K = 2

• Given ψ(s−1) ∈ [0, 1]n, update p(s) and q(s) by averaging the entries of A using the soft
membership vector ψ(s−1).

• Given p(s), q(s), update ψ(s),

ξ
(s+1)
i := log ψ

(s+1)
i

1− ψ(s+1)
i

= 4t(s)
∑
j 6=i

(ψ(s)
j −

1
2
)(Aij − λ(s)),

ψ
(s+1)
i = g(ξ(s+1)

i ), g is the sigmoid function,

where t(s) = 1
2 log

(
p(s)(1−q(s))
q(s)(1−p(s))

)
, λ(s) = 1

2t(s) log
(

1−q(s)

1−p(s)

)
.

Let p∗, q∗ (corresponding λ∗, t∗) be the true parameters. Our analysis has two parts:
• Knowing p∗, q∗, updating ψ alone.
• Full updates with unknown p∗, q∗.

Known p∗, q∗

• Let E(A|Z) = ZBZ> − p∗I =: P − p∗I , M = P − p∗I − λ∗(J − I). Key
decomposition:

ξ(s) = 4t(A− λ(J − I))(ψ(s−1) − 1
2
1)

= 4tM(ψ(s−1) − 1
2
1)︸ ︷︷ ︸

population version

+ 4t(A− E(A|Z))(ψ(s−1) − 1
2
1)︸ ︷︷ ︸

sample noise

,

•M has a simple eigendecomposition:

w1 = nα+ − (p∗ − λ∗) with α+ = p∗ + q∗

2
− λ∗, eigenvector u1 = 1

w2 = nα− − (p∗ − λ∗) with α− = p∗ − q∗

2
, eigenvector u2 = 1C1 − 1C2

wj = −(p∗ − λ∗), j = 3, . . . , n

• Project ψ(s) on u1, u2. ζ (s)
i = 〈ψ(s), ui〉/‖ui‖2 = 〈ψ(s), ui〉/n, for i = 1, 2.

ψ(s) = ζ
(s)
1 u1 + ζ

(s)
2 u2 + v(s).
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i , σi = ±1

• Key ψ to consider 1
21,1,0,1C1,1C2.

Known p∗, q∗

Proposition 1 (Saddle point)ψ = 1
21 is a saddle point of the population mean field

log-likelihood when p∗ and q∗ are known, for all n large enough.

Theorem 1 (Population behavior)The limit behavior of the population BCAVI updates
is characterized by the signs of α+ and a(0)

±1. Assume that |na(0)
±1| → ∞, ρn → 0. Define

`(ψ(0)) = 1(a(0)
+1 > 0)1C1 + 1(a(0)

−1 > 0)1C2. Then, we have
‖ψ(1) − `(ψ(0))‖2

n
= O(exp(−Θ(nmin{|a(0)

+1|, |a
(0)
−1|}))) = o(1).

We also have for any s ≥ 2,
‖ψ(s) − `(ψ(0))‖2

n
=

O(exp(−Θ(ntα−))), If a(0)
+1a

(0)
−1 < 0

O(exp(−Θ(ntα+)), If a(0)
+1a

(0)
−1 > 0.

For example, a(0)
+1a

(0)
−1 < 0, `(ψ(0)) = 1C1 or 1C2; a

(0)
+1a

(0)
−1 > 0, `(ψ(0)) = 1 or 0.

For example, a(0)
+1a

(0)
−1 < 0, `(ψ(0)) = 1C1 or 1C2; a

(0)
+1a

(0)
−1 > 0, `(ψ(0)) = 1 or 0. Consider the

sample updates with iid initialization ψ(0).
Theorem 2 (Sample behavior) For s ≥ 1, the same conclusion holds for the sample
BCAVI updates with high probability as long as n|a(0)

±1| � max{√nρn‖ψ(0) − 1
2‖∞, 1},√

nρn = Ω(log n) and ψ(0) is independent of A.

Remark 1The above condition is not satisfied when Eψ(0)
i = 1/2. In this case, ζ (0)

1 −1/2 =
OP (n−1/2), ζ (0)

2 = OP (n−1/2), n|a(0)
±1| = OP (

√
nρn).
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Figure: p∗ = 0.4, q∗ = 0.025, n = 200, 5000 initializations with iid Beta(α, β): (A), (C) represent
population behavior and (B), (D) represent the corresponding sample behavior.

Known p∗, q∗

Figure: Robustness to
estimation error in p, q.

• x axis has different p values and y axis
has different q values.

• The lines represent p∗ and q∗.
• The numbers represent average
accuracy from 50 random initializations
Unif (0, 1).

• p∗ = 0.5, q∗ = 0.1, n = 400

Unknown p∗, q∗

Proposition 2 (Optimization landscape) For n large enough, (ψ, p, q) =
(1

21,
p∗+q∗

2 , p
∗+q∗

2 ) is a strict local maximum of the population mean field log-likelihood.
Proposition 3Consider the population updates of BCAVI with unknown p∗, q∗ and
ρn → 0, nρn → ∞. Let (ψ, p̃, q̃) be a stationary point of the population mean field
log-likelihood. If ψ = ψu+ψu⊥, where ψu ∈ span{u1, u2} and ψu⊥ ⊥ span{u1, u2}, then
‖ψu⊥‖ = o(

√
n) as n→∞.

Lemma 3 (Futility of random initializations)Consider the initial distribution
ψ

(0)
i

iid∼ fµ where f is a distribution supported on (0, 1) with mean µ. If µ is bounded
away from 0 and 1 and nρn→∞, then ψ(s)

i = 1
2 +OP (

√
ρn/n) for s ≥ 1, where ψ(s) is

computed using the full updates.
Lemma 4 (Initializations correlated with truth) Consider an initial ψ(0) such that

ζ1 = µ1 + µ2

2
+ OP (1/

√
n) ζ2 = µ1 − µ2

2
+ OP (1/

√
n).

If µ1, µ2 are bounded away from 0 and 1 and satisfy

|µ1 − µ2| > max

2|µ1 + µ2 − 1| + OP

(
ρn/
√
n
)
,

(
ρn log n

n(p∗ − q∗)2

)1/3
 ,

and nρn→∞, then ψ(1) = 1C1 + OP (exp(−Ω(log n))) or 1C2 + OP (exp(−Ω(log n))).

Average distance between the estimated ψ and the true Z with respect to c0, where
E(ψ(0)) = (1/2 + c0)1C1 + (1/2− c0)1C2.

Generalizations - K > 2

Figure: Convergence from random
initialization for K = 3 with known p, q.

•K = 3, p∗ = 0.5, q∗ = 0.01, equal class,
n = 450, initialized with
Dirichlet(0.1, 0.1, 0.1).

• For each iteration (each row) we represent
the node membership with different colors.

• All stationary points lie in the span of
{1C1,1C2,1C3}.

• We conjecture that the number of
stationary points grow exponentially in K.

• Unknown p∗, q∗ and random initializations
lead to (1/3, 1/3, 1/3).


