
Homework Assignment 1

Due via canvas Feb 9th

SDS 384-11 Theoretical Statistics
Please do not add your name to the HW submission.

Also do not add collaborators here or in the comments section of Canvas.

1. (2 pt) Given densities fn and gn with respect to some measure µ, let X be distributed
according to the distribution with density fn. Define the likelihood ratio Ln(X)
as Ln(X) = gn(X)/fn(X) for fn(X) > 0, and Ln(X) = 1, if fn(X) = gn(X) =
0 and Ln(X) = ∞ otherwise. Show that the likelihood ratio is a uniformly tight
sequence. First note that ELn(X) =

∫
fn(x)>0 gn(x)/fn(x)dx ≤ 1, and hence by

Markov’s inequality, for any ϵ, P (Ln(X) > 1/ϵ) ≤ ϵ. This establishes tightness.

2. ( 1+2+3) We will do some examples of convergence in distribution and convergence
in probability here.

(a) Let Xn ∼ N(0, n). Prove that Xn = Op(
√
n) and oP (n). Since Xn/

√
n

d→
N(0, 1), we see that Xn/

√
n = OP (1) and hence Xn = OP (

√
n). As for the last

part, P (Xn/n ≥ t) ≤ 1/nt2 and hence Xn/n = oP (1).

(b) Let {Xn} be independent r.v’s such that P (Xn = nα) = 1/n and P (Xn = 0) =
1− 1/n for n ≥ 1, where α ∈ (−∞,∞) is a constant. For what values of α, will

you have Xn
q.m→ 0? For what values will you have Xn

p→ 0?

Convergence in quadratic mean:

E[|Xn|2] =
n2α

n

The above will converge to zero if 2α < 1, or α < 1
2 .

Convergence in Probability:

For ϵ ≥ nα we have Pr(|Xn| > ϵ) = 0. For ϵ < nα we have Pr(|Xn| > ϵ) = 1
n .

This probability converges to zero for all values of α.

(c) Consider the average of n i.i.d random variables X1, . . . , Xn with E[X1] = µ and
E[|X1|] < ∞. Write true or false.

i. X̄n = oP (1)
We know that X̄n converges to µ in probability. If µ ̸= 0, X̄n = oP (1) is
false.

ii. exp(X̄n − µ) = oP (1)
Solution. We know that X̄n−µ converges to 0 in probability. By continuous

mapping, If exp(X̄n − µ)
P→ 1. So false.
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iii. (X̄n − µ)2 = OP (1/n)

Fix ϵ > 0. Now P ((X̄n − µ)2 ≥ σ2

ϵ︸︷︷︸
Mϵ

) ≤ ϵ. So, its true.

3. (2+4+1) Consider random variablesX1, . . . , Xn be IID r.v’s with mean µ and variance
σ2 := var(Xi). We will use the following statistic to estimate θ = µ2.

θ̂ =
1(
n
2

) ∑
i<j

XiXj

(a) Find constants C1, C2 where

θ̂ − µ2 =
C1(
n
2

) ∑
i<j

(Xi − µ)(Xj − µ) +
C2µ

n

∑
i

(Xi − µ)

We have,

1(
n
2

) ∑
i<j

XiXj − µ2 =
1

n(n− 1)

∑
i ̸=j

XiXj − µ2

=
1

n(n− 1)

∑
i ̸=j

((Xi − µ)(Xj − µ) + µ(Xi − µ) + µ(Xj − µ))

=
1

n(n− 1)

∑
i ̸=j

(Xi − µ)(Xj − µ)︸ ︷︷ ︸
T1

+
2

n
µ
∑
i

(Xi − µ)︸ ︷︷ ︸
T2

Thus, C1 = 1, C2 = 2.

(b) Show that the first term is OP (1/n) and the second term is OP (1/
√
n).

Observe that,

var(T1) =
1

n2(n− 1)2

 ∑
i ̸=j,k ̸=ℓ

E(Xi − µ)(Xj − µ)(Xk − µ)(Xℓ − µ)


But in the above sum, all tuples with i ̸= j ̸= k ̸= ℓ are zero. All tuples with
i ̸= j = k ̸= ℓ are also zero. The only nonzero terms arise from i = k ̸= j = ℓ or
i = ℓ ̸= j = k. And there are O(n2) such terms all with expectation σ4. Thus
the variance of T1 is O(1/n2). We also see that

var(T2) = O(1/n)

Now note that for any sequence of mean zero random variables Xn, Yn =
Xn/

√
var(Xn) = OP (1). This is because,

sup
n

P (|Yn| ≥ 1/
√
ϵ) ≤ ϵ

Therefore, T1 = OP (1/n) and T2 = OP (1/
√
n).
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(c) Argue that θ̂
P→ µ2.

Since θ̂ − µ2 = oP (1), this is proved.

4. (3+2+2+3) If Xn
d→ X ∼ Poisson(λ), is it necessarily true that E[g(Xn)] →

E[g(X)]? Prove your answer when you believe the answer is true. When you be-
lieve it is “not necessarily true”, provide a counter-example.

(a) g(x) = 1(x ∈ (0, 10))

This is not necessarily true since g(x) is not continuous at x = 0. Consider the
sequence of random variables

Xn = X +
1

n

Clearly, Xn
p−→ X (and consequently Xn

d−→ X). However, since X ∼ P (λ),
therefore X ≥ 0. Therefore, ∀n ≥ 1, Xn > 0. Therefore,

g(Xn) =

{
1 for X < 10− 1

n

0 otherwise

and

g(X) =

{
1 for X < 10 and X ≥ 1

0 otherwise

Therefore,

Eg(Xn) = P (X < 10− 1

n
) → P (X < 10)

but

Eg (X) = P (X < 10)− P (X = 0) = P (X < 10)− e−λ

(b) g(x) = e−x2

True by Portmanteau thm.

(c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0.]

Also true by Portmanteau thm, since g(x) is bounded and the discontintuity
points are all at odd multiples of π/2, which are not intergers, and hence the
limiting random variable has zero probability mass on this set.

(d) g(x) = x

Not necessarily true since g(x) is not bounded. Consider a counter example:

Xn =

{
X with probability 1− 1/n

n with probability 1/n

But EXn = EX(1− 1/n) + 1 → EX + 1.

5. (1+4) Consider Xn Uniform on {1/n, 2/n, . . . , 1}. Let X ∼ Uniform([0, 1]). For the
questions below, either give a proof or a counter-example.
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(a) Does Xn
d→ X?

Yes. If t ≤ 1, P (Xn ≤ t) = ⌊min(tn,n)⌋
n → t.

(b) Does Xn
P→ X?

No, first, we need to define Xn and X on the same probability space to even
start thinking about convergence in probability. But we will show with a counter
example that even with such a construction we can couple Xn and X such that

Xn
d→ X but Xn does not converge in probability to X.

First define Yn = ⌈nX⌉/n. Note that Yn is a discrete Uniform. Now define
Xn = 1+ 1/n− Yn. Clearly, this is also a discrete uniform, and hence converges
in distribution to X, but what about convergence in probability?

P (Xn −X ≥ 1/2) = P (1 + 1/n− Yn −X ≥ 1/2)

= P (Yn +X ≤ 1/2 + 1/n) = P (⌈nX⌉+ nX ≤ n/2 + 1) ≥ P (X ≤ 1/4)

which does not converge to zero.

4


