Homework Assignment 1

Due via canvas Feb 11th

SDS 384-11 Theoretical Statistics Please **do not** add your name to the HW submission.

- 1. Given densities f_n and g_n with respect to some measure μ , let X be distributed according to the distribution with density f_n . Define the likelihood ratio $L_n(X)$ as $L_n(X) = g_n(X)/f_n(X)$ for $f_n(X) > 0$, and $L_n(X) = 1$, if $f_n(X) = g_n(X) = 0$ and $L_n(X) = \infty$ otherwise. Show that the likelihood ratio is a uniformly tight sequence.
- 2. We will do some examples of convergence in distribution and convergence in probability here.
 - (a) Let $X_n \sim N(0, n)$. Prove that $X_n = O_p(\sqrt{n})$ and $o_P(n)$.
 - (b) Let $\{X_n\}$ be independent r.v's such that $P(X_n = n^{\alpha}) = 1/n$ and $P(X_n = 0) = 1 1/n$ for $n \ge 1$, where $\alpha \in (-\infty, \infty)$ is a constant. For what values of α , will you have $X_n \xrightarrow{q.m} 0$? For what values will you have $X_n \xrightarrow{p} 0$?
 - (c) Consider the average of n i.i.d random variables X_1, \ldots, X_n with $E[X_1] = \mu$ and $E[|X_1|] < \infty$. Write true or false.
 - i. $\bar{X}_n = o_P(1)$ ii. $\exp(\bar{X}_n - \mu) = o_P(1)$ iii. $(\bar{X}_n - \mu)^2 = O_P(1/n)$
- 3. Consider random variables X_1, \ldots, X_n be IID r.v's with mean μ and variance $\sigma^2 := \operatorname{var}(X_i)$. We will use the following statistic to estimate $\theta = \mu^2$.

$$\hat{\theta} = \frac{1}{\binom{n}{2}} \sum_{i < j} X_i X_j$$

(a) Find constants C_1, C_2 where

$$\hat{\theta} - \mu^2 = \frac{C_1}{\binom{n}{2}} \sum_{i < j} (X_i - \mu)(X_j - \mu) + \frac{C_2 \mu}{n} \sum_i (X_i - \mu)$$

- (b) Show that the first term is $O_P(1/n)$ and the second term is $O_P(1/\sqrt{n})$.
- (c) Argue that $\hat{\theta} \xrightarrow{P} \mu^2$.
- 4. If $X_n \xrightarrow{d} X \sim Poisson(\lambda)$, is it necessarily true that $E[g(X_n)] \rightarrow E[g(X)]$? Prove your answer when you believe the answer is true. When you believe it is "not necessarily true", provide a counter-example.

(a)
$$g(x) = 1(x \in (0, 10))$$

- (b) $g(x) = e^{-x^2}$ (c) g(x) = sgn(cos(x)) [sgn(x) = 1 if x > 0, -1 if x < 0 and 0 if x = 0.] (d) g(x) = x
- 5. Consider X_n Uniform on $\{1/n, 2/n, \ldots, 1\}$. Let $X \sim \text{Uniform}([0, 1])$. For the questions below, either give a proof or a counter-example.
 - (a) Does $X_n \xrightarrow{d} X$?
 - (b) Does $X_n \xrightarrow{P} X$?