
Homework Assignment 2

Due Feb 28th midnight

SDS 384-11 Theoretical Statistics

1. (2+2+1) Consider a r.v. X such that for all λ ∈ R

E[eλX ] ≤ e
λ2σ2

2
+λµ (1)

Prove that:

(a) E[X] = µ.

Solution.
Let f(λ) = E[eλX ] and let g(λ) = eλ

2σ2/2+λµ. We have f(0) = g(0).

f ′(0) = lim
h→0

f(h)− f(0)

h
≤ lim

h→0

g(h)− g(0)

h
= g′(0)

But we also have:

f ′(0) = lim
h→0

f(0)− f(−h)

h
≥ lim

h→0

g(0)− g(−h)

h
= g′(0)

So f ′(0) = g′(0). So we have E[X] = µ.

(b) var(X) ≤ σ2.

Solution.

Let us denote

Mc(λ) = exp(−λµ)M(λ)

= E[exp(λ(X − µ))]

and similarly,

Uc(λ) = exp(−λµ)U(λ)

= exp

(
λ2σ2

2

)
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Then, by construction, we have that Mc(λ) ≤ Uc(λ). Additionally, Mc(0) = 1 =
Uc(0), M

′′
c (0) = var(X), and U ′′

c (0) = σ2. Therefore, we have that

var(X) = M ′′
c (0)

= lim
ε→0

Mc(ε) +Mc(−ε)− 2Mc(0)

ε2

= lim
ε→0

Mc(ε) +Mc(−ε)− 2Uc(0)

ε2

≤ lim
ε→0

Uc(ε) + Uc(−ε)− 2Uc(0)

ε2

= U ′′
c (0)

= σ2

which establishes the desired inequality.

(c) If the smallest value of σ satisfying the above equation is chosen, is it true that
var(X) = σ2? Prove or give a counter-example.

Solution.
We give a counterexample to establish that σ2 ̸= var(X). ConsiderX ∼ Bern (p).
Then, assuming that σ2 = p(1− p) = var(X), we have that

E [exp (λ (X − p))] = p exp(λ(1− p)) + (1− p) exp(−λp)

= exp(λ(1− p)) (p+ (1− p) exp(−λ))

≤ exp

(
λ2p(1− p)

2

)
by assumed subG bound

=⇒ p+ (1− p) exp(−λ) ≤ exp

(
λ(1− p)

(
λp

2
− 1

))
(2)

However, by choosing, for example, λ = 1
4 and p = 1

16 , one can check that

p+ (1− p) exp(−λ)− exp

(
λ(1− p)

(
λp

2
− 1

))
≈ 0.0001 > 0

which is a contradiction of inequality (2). Therefore, we cannot always take
σ2 = var(X).

2. (5pts) Given a symmetric positive semidefinite matrix Q ∈ Rn×n, consider Z =∑
i,j QijXiXj . When Xi ∼ N(0, 1), prove the Hanson-Wright inequality.

P (Z ≥ trace(Q) + t) ≤ exp
(
−min

{
c1t/∥Q∥op, c2t2/∥Q∥2F

})
,

where ∥Q∥op and ∥Q∥F denote the operator and frobenius norms respectively. Useful
facts: Let λ1 ≥ λ2 ≥ . . . denote the eigenvalues of Q. Remember that ∥Q∥op =
supv:∥v∥=1 ∥Qv∥ = λ1. For a PSD matrix Q, trace(Q) =

∑
i λi, and ∥Q∥2F =

∑
i λ

2
i .

Hint: The rotation-invariance of the Gaussian distribution and sub-exponential nature
of χ2-variables could be useful.
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3. (5+5+5) We will prove properties of subgaussian random variables here. Prove that:

(a) Moments of a mean zero subgaussian r.v. X with variance proxy σ2 satisfy:

E[|Xk|] ≤ k2k/2σkΓ(k/2), (3)

where Γ is the gamma function.

Solution.
We have that, by the Subgaussian assumption,

E[|X|k] =
∫ ∞

0
P(|X|k > t)dt

=

∫ ∞

0
P(|X| > t1/k)dt

≤ 2

∫ ∞

0
exp

(
− t2

2σ2

)
dt

Now, recalling that

Γ(z) =

∫ ∞

0
tz−1 exp(−t)dt,

we may perform the change of variables t = axb to obtain:

Γ(z) =

∫ ∞

0
az−1xbz−b exp(−axb)abxb−1dx

= azb

∫ ∞

0
xbz−1 exp(−axb)dx

Thus,

Γ

(
1

b

)
= a

1
b b

∫ ∞

0
exp(−axb)dx

Now, choosing a = 1
2σ2 and b = 2

k , we combine our results to obtain:

E[|X|k] ≤ 2

∫ ∞

0
exp

(
− t2

2σ2

)
dt

=
2

a
1
b b

Γ

(
1

b

)
=

2(
1

2σ2

) k
2 2

k

Γ

(
k

2

)

= k2k/2σkΓ

(
k

2

)
as desired.
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(b) If X is a mean 0 subgaussian r.v. with variance proxy σ2, prove that, X2 −
E[X2] is a subexponential (c1σ

2, c2σ
2) (we are using the (ν, b) parametrization

of subexponentials we did in class, so ν2 is the variance proxy). Here c1, c2 are
positive constants. Many people will use E[(X2 − [EX]2)k] ≤ E[X2k]. This is
wrong. 1 pt off for this. For those who use the definition of sub-exponentiality
from scratch, if they assume t > 0, take 1/2 point off. See the alternative solution
here.

I am going to give two different solutions here. And point out common
mistakes you may make.The first uses Bernstein’s moment condition.
In class we did a very easy bounded random variable example to show
it is subexponential since it satisfies the bernstein m.c. Here is a far
less trivial example of its use. The second solution gets to the answer
through the definition of sub-exp r.v.s as we saw in class.

Solution.
Here, we wish to apply the Bernstein condition. Observe that∣∣∣E(X2 − EX2)k

∣∣∣
≤ E

∣∣X2 − EX2
∣∣k Jensen’s

= E
(∣∣X2 − EX2

∣∣k 1{X2 ≥ EX2}
)
+ E

(∣∣X2 − EX2
∣∣k 1{X2 < EX2}

)

Now, observe that, almost surely,

|X2 − EX2|k1{X2 ≥ EX2} ≤ |X2|k1{X2 ≥ EX2} since EX2 ≥ 0

≤ |X|2k since 1{·} ≤ 1 a.s.

and similarly,

|X2 − EX2|k1{X2 < EX2} ≤ |EX2|k1{X2 < EX2} since X2 ≥ 0 a.s.

≤ |EX2|k since 1{·} ≤ 1 a.s.

≤ E|X|2k by Jensen’s, since | · |k is convex

Note the treatment above. Many of you may bound E[(X2− [EX]2)k] ≤
E[X2k]. This is incorrect, because |X2 − E[X2]| ≤ max(X2, E[X2]). I am
gong to take a point off for this, just so that this sticks in our minds.

Finally, note that

var(X2) ≤ EX4

≤ 4 · 22σ4Γ(2)

= 24σ4

< 25σ4
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Combining these bounds, we have that∣∣∣E(X2 − EX2)k
∣∣∣ ≤ 2E|X|2k

≤ 4k2kσ2k Γ(k)︸︷︷︸
=(k−1)!

by the previous exercise

=
1

2
k!25σ4

(
2σ2
)k−2

Therefore, by the Bernstein condition, we have that X2 is subexponential with
paratmeters (ν = 8σ2, b = 4σ2), as desired.

Solution.
Now we will prove the subexponentiality using the MGF. Note that we have
E[X2] ≤ σ2.

E[exp(λ(X2 − E[X2]))] ≤ exp(−λE[X2])E[exp(λX2)]

= exp(−λE[X2])

1 + λE[X2] +
∑
k≥2

λkE[X2k]

k!


= exp(−λE[X2])

1 + λE[X2] + 2
∑
k≥2

2kσ2k|λ|k


(For |λ| < 1/2σ2, we have) = exp(−λE[X2])
(
1 + λE[X2]

)︸ ︷︷ ︸
This is ≤ 1 since exp(x)≥1+x

+
8σ4λ2 exp(−λE[X2])

1− 2σ2|λ|

(For |λ| < 1/4σ2, we have) ≤ 1 + 16σ4λ2 exp(|λ|σ2)︸ ︷︷ ︸
E[X2]≤σ2

≤ 1 + 16σ4λ2 exp(1/4)︸ ︷︷ ︸
|λ|≤1/4σ2

≤ 1 + 25σ4λ2 ≤ exp((4
√
2σ2)2λ2)︸ ︷︷ ︸

exp(x)≥1+x

So we have X2 − E[X2] is sub exponential (8σ2, 4σ2).

(c) Consider two independent mean zero subgaussian r.v.s X1 and X2 with variance
proxies σ2

1 and σ2
2 respectively. Show that X1X2 is a subexponential r.v. with

parameters (d1σ1σ2, d2σ1σ2). Here d1, d2 are positive constants. Again, here
also, I think most people will get the right answer if they end up proving it. So
full score unless you see obvious mistakes.

Solution.
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Observe that,

E[(X1X2 − E[X1X2])
k] = E[(X1X2 − E[X1]E[X2])

k] by independence

= E[(X1X2)
k] mean 0

≤ E[|X1X2|k]
= E[|X1|k]E[|X2|k] independence

≤
(
k2k/2σk

1Γ

(
k

2

))(
k2k/2σk

2Γ

(
k

2

))
by part 1

=

(
kΓ

(
k

2

))2

2k(σ1σ2)
2

Now, recall that, for k an odd integer,

Γ

(
k

2

)
= Γ

(⌊
k

2

⌋
+

1

2

)
=

√
π

(
2
⌊
k
2

⌋)
!

4⌊k/2⌋⌊k/2⌋!

=
√
π
2 (k − 1)!

4k/2⌊k/2⌋!

Thus, we have that (
kΓ

(
k

2

))2

= πk2
((k − 1)!)2

4k (⌊k/2⌋)2
(4)

≤ k!

⇐⇒ πk! ≤ 4k⌊k/2⌋! (5)

Now, note that (4) is true for sufficiently large k. Similarly, when k is even,

Γ

(
k

2

)
=

(
k

2
− 1

)
!

so we have that (
kΓ

(
k

2

))2

= k2
((

k

2
− 1

)
!

)2

≤ k! (6)

⇐⇒ k

(
k

2
− 1

)
! ≤

k
2
−1∏

i=1

(k − i)

⇐⇒ 1 ≤ k − 1

k

k
2
−1∏

i=2

k − i
k
2 + 1− i

(7)
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Observe that (6) is true for sufficiently large k. Therefore, there exists a universal
constant C such that

E[(X1X2 − E[X1X2])
k] =

(
kΓ

(
k

2

))2

2k(σ1σ2)
2

≤ Ck!2k(σ1σ2)
k

≤ 1

2
k!(σ1σ2)

2(C̃σ1σ2)
k

For sufficiently large C̃. Therefore, since var(X1X2) ≤ σ2
1σ

2
2, by Bernstein’s

theorem, X1X2 is subexponential with parameters (ν =
√
2σ1σ2, b = 2C̃σ1σ2).

This establishes the desired result.

4. (1+4) Subgaussian and subexponential random variables have moments that are grow-
ing suitably so that we can have a bound on the MGF. Consider scalar random vari-
ables X1, . . . , Xn that are IID samples from some distribution with mean µ. What
if all we have is an upper bound on the variance, i.e. E[(X1 − µ)2] ≤ σ2 < ∞ -
are there estimators for which we can obtain exponential tail bounds? This is what
we will learn through this exercise. Assume n = mk for some positive integers m, k.
Divide the data into k disjoint chunks. For each chunk, compute the mean, call this
mi, i = 1, . . . , k. Let your estimator be µ̂n := median({mi}ki=1). We will show that,
for some appropriately picked k = kδ,

P

(
|µ̂n − µ| ≥ cσ

√
log(1/δ)

n

)
≤ δ (8)

where c is a constant.

(a) First show that, for i ∈ {1, . . . , k} P
(
|mi − µ| ≥ σ

2
√
m

)
≤ 1/4

Solution.
This is just Chebychev’s inequality applied to every partition.

(b) Now find a suitable k as a function of δ, such that Eq 8 holds. Hint: Use
the definition of a median to frame Eq 8 as a failure probability of a sum of k
independent Bernoulli(pi) RVs with pi ≥ 1/4.

Solution.

Let N =

∣∣∣∣{i : |mi − µ| ≥ cσ

√
log(1/δ)

n }
∣∣∣∣.

p := P

(
|mi − µ| ≥ cσ

√
log(1/δ)

n

)
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Note N ∼ Bin(k, p).

P

(
|µ̂n − µ| ≥ cσ

√
log(1/δ)

n

)
≤ P (N ≥ k/2)

≤ exp(−2(k/2− kp)2/k)

≤ exp(−k/8) =: δ

Set k = ⌊8 log(1/δ)⌋. Now subsituting m = n/k gives the result.

P

(
|µ̂n − µ| ≥ 3σ

√
log(1/δ)

n

)
≤ P

(
|µ̂n − µ| ≥ .5σ

√
⌊8 log(1/δ)⌋

n

)
≤ δ
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