Homework Assignment 2

Due Feb 28th midnight

SDS 384-11 Theoretical Statistics

1. $(2+2+1)$ Consider a r.v. X such that for all $\lambda \in \mathbb{R}$

$$
\begin{equation*}
E\left[e^{\lambda X}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}+\lambda \mu} \tag{1}
\end{equation*}
$$

Prove that:
(a) $E[X]=\mu$.

Solution.
Let $f(\lambda)=E\left[e^{\lambda X}\right]$ and let $g(\lambda)=e^{\lambda^{2} \sigma^{2} / 2+\lambda \mu}$. We have $f(0)=g(0)$.

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \leq \lim _{h \rightarrow 0} \frac{g(h)-g(0)}{h}=g^{\prime}(0)
$$

But we also have:

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0)-f(-h)}{h} \geq \lim _{h \rightarrow 0} \frac{g(0)-g(-h)}{h}=g^{\prime}(0)
$$

So $f^{\prime}(0)=g^{\prime}(0)$. So we have $E[X]=\mu$.
(b) $\operatorname{var}(X) \leq \sigma^{2}$.

Solution.

Let us denote

$$
\begin{aligned}
M_{c}(\lambda) & =\exp (-\lambda \mu) M(\lambda) \\
& =\mathbb{E}[\exp (\lambda(X-\mu))]
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
U_{c}(\lambda) & =\exp (-\lambda \mu) U(\lambda) \\
& =\exp \left(\frac{\lambda^{2} \sigma^{2}}{2}\right)
\end{aligned}
$$

Then, by construction, we have that $M_{c}(\lambda) \leq U_{c}(\lambda)$. Additionally, $M_{c}(0)=1=$ $U_{c}(0), M_{c}^{\prime \prime}(0)=\operatorname{var}(X)$, and $U_{c}^{\prime \prime}(0)=\sigma^{2}$. Therefore, we have that

$$
\begin{aligned}
\operatorname{var}(X) & =M_{c}^{\prime \prime}(0) \\
& =\lim _{\varepsilon \rightarrow 0} \frac{M_{c}(\varepsilon)+M_{c}(-\varepsilon)-2 M_{c}(0)}{\varepsilon^{2}} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{M_{c}(\varepsilon)+M_{c}(-\varepsilon)-2 U_{c}(0)}{\varepsilon^{2}} \\
& \leq \lim _{\varepsilon \rightarrow 0} \frac{U_{c}(\varepsilon)+U_{c}(-\varepsilon)-2 U_{c}(0)}{\varepsilon^{2}} \\
& =U_{c}^{\prime \prime}(0) \\
& =\sigma^{2}
\end{aligned}
$$

which establishes the desired inequality.
(c) If the smallest value of σ satisfying the above equation is chosen, is it true that $\operatorname{var}(X)=\sigma^{2}$? Prove or give a counter-example.

Solution.
We give a counterexample to establish that $\sigma^{2} \neq \operatorname{var}(X)$. Consider $X \sim \operatorname{Bern}(p)$. Then, assuming that $\sigma^{2}=p(1-p)=\operatorname{var}(X)$, we have that

$$
\begin{array}{rlrl}
\mathbb{E}[\exp (\lambda(X-p))] & =p \exp (\lambda(1-p))+(1-p) \exp (-\lambda p) & & \\
& =\exp (\lambda(1-p))(p+(1-p) \exp (-\lambda)) & & \\
& \leq \exp \left(\frac{\lambda^{2} p(1-p)}{2}\right) & \text { by assumed subG bound } \\
\Longrightarrow p+(1-p) \exp (-\lambda) & \leq \exp \left(\lambda(1-p)\left(\frac{\lambda p}{2}-1\right)\right) & \tag{2}
\end{array}
$$

However, by choosing, for example, $\lambda=\frac{1}{4}$ and $p=\frac{1}{16}$, one can check that

$$
p+(1-p) \exp (-\lambda)-\exp \left(\lambda(1-p)\left(\frac{\lambda p}{2}-1\right)\right) \approx 0.0001>0
$$

which is a contradiction of inequality (22). Therefore, we cannot always take $\sigma^{2}=\operatorname{var}(X)$.
2. (5pts) Given a symmetric positive semidefinite matrix $Q \in \mathbb{R}^{n \times n}$, consider $Z=$ $\sum_{i, j} Q_{i j} X_{i} X_{j}$. When $X_{i} \sim N(0,1)$, prove the Hanson-Wright inequality.

$$
P(Z \geq \operatorname{trace}(Q)+t) \leq \exp \left(-\min \left\{c_{1} t /\|Q\|_{o p}, c_{2} t^{2} /\|Q\|_{F}^{2}\right\}\right),
$$

where $\|Q\|_{o p}$ and $\|Q\|_{F}$ denote the operator and frobenius norms respectively. Useful facts: Let $\lambda_{1} \geq \lambda_{2} \geq \ldots$ denote the eigenvalues of Q. Remember that $\|Q\|_{o p}=$ $\sup _{v:\|v\|=1}\|Q v\|=\lambda_{1}$. For a PSD matrix Q, $\operatorname{trace}(Q)=\sum_{i} \lambda_{i}$, and $\|Q\|_{F}^{2}=\sum_{i} \lambda_{i}^{2}$. Hint: The rotation-invariance of the Gaussian distribution and sub-exponential nature of χ^{2}-variables could be useful.
3. $(5+5+5)$ We will prove properties of subgaussian random variables here. Prove that:
(a) Moments of a mean zero subgaussian r.v. X with variance proxy σ^{2} satisfy:

$$
\begin{equation*}
E\left[\left|X^{k}\right|\right] \leq k 2^{k / 2} \sigma^{k} \Gamma(k / 2), \tag{3}
\end{equation*}
$$

where Γ is the gamma function.

Solution.

We have that, by the Subgaussian assumption,

$$
\begin{aligned}
\mathbb{E}\left[|X|^{k}\right] & =\int_{0}^{\infty} \mathbb{P}\left(|X|^{k}>t\right) d t \\
& =\int_{0}^{\infty} \mathbb{P}\left(|X|>t^{1 / k}\right) d t \\
& \leq 2 \int_{0}^{\infty} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) d t
\end{aligned}
$$

Now, recalling that

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} \exp (-t) d t
$$

we may perform the change of variables $t=a x^{b}$ to obtain:

$$
\begin{aligned}
\Gamma(z) & =\int_{0}^{\infty} a^{z-1} x^{b z-b} \exp \left(-a x^{b}\right) a b x^{b-1} d x \\
& =a^{z} b \int_{0}^{\infty} x^{b z-1} \exp \left(-a x^{b}\right) d x
\end{aligned}
$$

Thus,

$$
\Gamma\left(\frac{1}{b}\right)=a^{\frac{1}{b}} b \int_{0}^{\infty} \exp \left(-a x^{b}\right) d x
$$

Now, choosing $a=\frac{1}{2 \sigma^{2}}$ and $b=\frac{2}{k}$, we combine our results to obtain:

$$
\begin{aligned}
\mathbb{E}\left[|X|^{k}\right] & \leq 2 \int_{0}^{\infty} \exp \left(-\frac{t^{2}}{2 \sigma^{2}}\right) d t \\
& =\frac{2}{a^{\frac{1}{b}} b} \Gamma\left(\frac{1}{b}\right) \\
& =\frac{2}{\left(\frac{1}{2 \sigma^{2}}\right)^{\frac{k}{2}} \frac{2}{k}} \Gamma\left(\frac{k}{2}\right) \\
& =k 2^{k / 2} \sigma^{k} \Gamma\left(\frac{k}{2}\right)
\end{aligned}
$$

as desired.
(b) If X is a mean 0 subgaussian r.v. with variance proxy σ^{2}, prove that, $X^{2}-$ $E\left[X^{2}\right]$ is a subexponential $\left(c_{1} \sigma^{2}, c_{2} \sigma^{2}\right)$ (we are using the ($\left.\nu, b\right)$ parametrization of subexponentials we did in class, so ν^{2} is the variance proxy). Here c_{1}, c_{2} are positive constants. Many people will use $E\left[\left(X^{2}-[E X]^{2}\right)^{k}\right] \leq E\left[X^{2 k}\right]$. This is wrong. 1 pt off for this. For those who use the definition of sub-exponentiality from scratch, if they assume $t>0$, take $1 / 2$ point off. See the alternative solution here.
I am going to give two different solutions here. And point out common mistakes you may make.The first uses Bernstein's moment condition. In class we did a very easy bounded random variable example to show it is subexponential since it satisfies the bernstein m.c. Here is a far less trivial example of its use. The second solution gets to the answer through the definition of sub-exp r.v.s as we saw in class.

Solution.

Here, we wish to apply the Bernstein condition. Observe that

$$
\begin{aligned}
& \left|\mathbb{E}\left(X^{2}-\mathbb{E} X^{2}\right)^{k}\right| \\
& \leq \mathbb{E}\left|X^{2}-\mathbb{E} X^{2}\right|^{k} \\
& =\mathbb{E}\left(\left|X^{2}-\mathbb{E} X^{2}\right|^{k} 1\left\{X^{2} \geq \mathbb{E} X^{2}\right\}\right)+\mathbb{E}\left(\left|X^{2}-\mathbb{E} X^{2}\right|^{k} 1\left\{X^{2}<\mathbb{E} X^{2}\right\}\right)
\end{aligned}
$$

Now, observe that, almost surely,

$$
\begin{array}{rlrl}
\left|X^{2}-\mathbb{E} X^{2}\right|^{k} 1\left\{X^{2} \geq \mathbb{E} X^{2}\right\} & \leq\left|X^{2}\right|^{k} 1\left\{X^{2} \geq \mathbb{E} X^{2}\right\} & & \text { since } \mathbb{E} X^{2} \geq 0 \\
& & \leq|X|^{2 k} & \\
\text { since } 1\{\cdot\} \leq 1 \text { a.s. }
\end{array}
$$

and similarly,

$$
\begin{aligned}
\left|X^{2}-\mathbb{E} X^{2}\right|^{k} 1\left\{X^{2}<\mathbb{E} X^{2}\right\} & \leq\left|\mathbb{E} X^{2}\right|^{k} 1\left\{X^{2}<\mathbb{E} X^{2}\right\} \\
& \leq\left|\mathbb{E} X^{2}\right|^{k} \\
& \\
& \text { since } X^{2} \geq 0 \text { a.s. } \\
& \leq \mathbb{E}|X|^{2 k}
\end{aligned}
$$

Note the treatment above. Many of you may bound $E\left[\left(X^{2}-[E X]^{2}\right)^{k}\right] \leq$ $E\left[X^{2 k}\right]$. This is incorrect, because $\left|X^{2}-E\left[X^{2}\right]\right| \leq \max \left(X^{2}, E\left[X^{2}\right]\right)$. I am gong to take a point off for this, just so that this sticks in our minds. Finally, note that

$$
\begin{aligned}
\operatorname{var}\left(X^{2}\right) & \leq \mathbb{E} X^{4} \\
& \leq 4 \cdot 2^{2} \sigma^{4} \Gamma(2) \\
& =2^{4} \sigma^{4} \\
& <2^{5} \sigma^{4}
\end{aligned}
$$

Combining these bounds, we have that

$$
\begin{aligned}
\left|\mathbb{E}\left(X^{2}-\mathbb{E} X^{2}\right)^{k}\right| & \leq 2 \mathbb{E}|X|^{2 k} \\
& \leq 4 k 2^{k} \sigma^{2 k} \underbrace{\Gamma(k)}_{=(k-1)!} \quad \text { by the previous exercise } \\
& =\frac{1}{2} k!2^{5} \sigma^{4}\left(2 \sigma^{2}\right)^{k-2}
\end{aligned}
$$

Therefore, by the Bernstein condition, we have that X^{2} is subexponential with paratmeters ($\nu=8 \sigma^{2}, b=4 \sigma^{2}$), as desired.

Solution.
Now we will prove the subexponentiality using the MGF. Note that we have $E\left[X^{2}\right] \leq \sigma^{2}$.

$$
\begin{aligned}
E\left[\exp \left(\lambda\left(X^{2}-E\left[X^{2}\right]\right)\right)\right] & \leq \exp \left(-\lambda E\left[X^{2}\right]\right) E\left[\exp \left(\lambda X^{2}\right)\right] \\
& =\exp \left(-\lambda E\left[X^{2}\right]\right)\left(1+\lambda E\left[X^{2}\right]+\sum_{k \geq 2} \lambda^{k} \frac{E\left[X^{2 k}\right]}{k!}\right) \\
& =\exp \left(-\lambda E\left[X^{2}\right]\right)\left(1+\lambda E\left[X^{2}\right]+2 \sum_{k \geq 2} 2^{k} \sigma^{2 k}|\lambda|^{k}\right)
\end{aligned}
$$

(For $|\lambda|<1 / 2 \sigma^{2}$, we have) $=\underbrace{\exp \left(-\lambda E\left[X^{2}\right]\right)\left(1+\lambda E\left[X^{2}\right]\right)}_{\text {This is } \leq 1 \text { since } \exp (x) \geq 1+x}+\frac{8 \sigma^{4} \lambda^{2} \exp \left(-\lambda E\left[X^{2}\right]\right)}{1-2 \sigma^{2}|\lambda|}$

$$
\begin{aligned}
\left(\text { For }|\lambda|<1 / 4 \sigma^{2}, \text { we have }\right) & \leq 1+\underbrace{16 \sigma^{4} \lambda^{2} \exp \left(|\lambda| \sigma^{2}\right)}_{E\left[X^{2}\right] \leq \sigma^{2}} \leq 1+\underbrace{16 \sigma^{4} \lambda^{2} \exp (1 / 4)}_{|\lambda| \leq 1 / 4 \sigma^{2}} \\
& \leq 1+2^{5} \sigma^{4} \lambda^{2} \leq \underbrace{\exp \left(\left(4 \sqrt{2} \sigma^{2}\right)^{2} \lambda^{2}\right)}_{\exp (x) \geq 1+x}
\end{aligned}
$$

So we have $X^{2}-E\left[X^{2}\right]$ is sub exponential $\left(8 \sigma^{2}, 4 \sigma^{2}\right)$.
(c) Consider two independent mean zero subgaussian r.v.s X_{1} and X_{2} with variance proxies σ_{1}^{2} and σ_{2}^{2} respectively. Show that $X_{1} X_{2}$ is a subexponential r.v. with parameters $\left(d_{1} \sigma_{1} \sigma_{2}, d_{2} \sigma_{1} \sigma_{2}\right)$. Here d_{1}, d_{2} are positive constants. Again, here also, I think most people will get the right answer if they end up proving it. So full score unless you see obvious mistakes.

Solution.

Observe that,

$$
\begin{array}{rlrl}
\mathbb{E}\left[\left(X_{1} X_{2}-\mathbb{E}\left[X_{1} X_{2}\right]\right)^{k}\right] & =\mathbb{E}\left[\left(X_{1} X_{2}-\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right]\right)^{k}\right] & & \text { by independence } \\
& =\mathbb{E}\left[\left(X_{1} X_{2}\right)^{k}\right] & & \text { mean } 0 \\
& \leq \mathbb{E}\left[\left|X_{1} X_{2}\right|^{k}\right] & & \text { independence } \\
& =\mathbb{E}\left[\left|X_{1}\right|^{k}\right] \mathbb{E}\left[\left|X_{2}\right|^{k}\right] & & \\
& \leq\left(k 2^{k / 2} \sigma_{1}^{k} \Gamma\left(\frac{k}{2}\right)\right)\left(k 2^{k / 2} \sigma_{2}^{k} \Gamma\left(\frac{k}{2}\right)\right) & & \text { by part 1 } \\
& =\left(k \Gamma\left(\frac{k}{2}\right)\right)^{2} 2^{k}\left(\sigma_{1} \sigma_{2}\right)^{2} &
\end{array}
$$

Now, recall that, for k an odd integer,

$$
\begin{aligned}
\Gamma\left(\frac{k}{2}\right) & =\Gamma\left(\left\lfloor\frac{k}{2}\right\rfloor+\frac{1}{2}\right) \\
& =\sqrt{\pi} \frac{\left(2\left\lfloor\frac{k}{2}\right\rfloor\right)!}{4^{\lfloor k / 2\rfloor\lfloor k / 2\rfloor!}} \\
& =\sqrt{\pi} \frac{2(k-1)!}{4^{k / 2}\lfloor k / 2\rfloor!}
\end{aligned}
$$

Thus, we have that

$$
\begin{align*}
\left(k \Gamma\left(\frac{k}{2}\right)\right)^{2} & =\pi k^{2} \frac{((k-1)!)^{2}}{4^{k}(\lfloor k / 2\rfloor)^{2}} \tag{4}\\
& \leq k! \\
\Longleftrightarrow \pi k! & \leq 4^{k}\lfloor k / 2\rfloor! \tag{5}
\end{align*}
$$

Now, note that (4) is true for sufficiently large k. Similarly, when k is even,

$$
\Gamma\left(\frac{k}{2}\right)=\left(\frac{k}{2}-1\right)!
$$

so we have that

$$
\begin{align*}
\left(k \Gamma\left(\frac{k}{2}\right)\right)^{2} & =k^{2}\left(\left(\frac{k}{2}-1\right)!\right)^{2} \\
& \leq k! \tag{6}\\
\Longleftrightarrow k\left(\frac{k}{2}-1\right)! & \leq \prod_{i=1}^{\frac{k}{2}-1}(k-i) \\
\Longleftrightarrow 1 & \leq \frac{k-1}{k} \prod_{i=2}^{\frac{k}{2}-1} \frac{k-i}{\frac{k}{2}+1-i} \tag{7}
\end{align*}
$$

Observe that (6) is true for sufficiently large k. Therefore, there exists a universal constant C such that

$$
\begin{aligned}
\mathbb{E}\left[\left(X_{1} X_{2}-\mathbb{E}\left[X_{1} X_{2}\right]\right)^{k}\right] & =\left(k \Gamma\left(\frac{k}{2}\right)\right)^{2} 2^{k}\left(\sigma_{1} \sigma_{2}\right)^{2} \\
& \leq C k!2^{k}\left(\sigma_{1} \sigma_{2}\right)^{k} \\
& \leq \frac{1}{2} k!\left(\sigma_{1} \sigma_{2}\right)^{2}\left(\tilde{C} \sigma_{1} \sigma_{2}\right)^{k}
\end{aligned}
$$

For sufficiently large \tilde{C}. Therefore, since $\operatorname{var}\left(X_{1} X_{2}\right) \leq \sigma_{1}^{2} \sigma_{2}^{2}$, by Bernstein's theorem, $X_{1} X_{2}$ is subexponential with parameters $\left(\nu=\sqrt{2} \sigma_{1} \sigma_{2}, b=2 \tilde{C} \sigma_{1} \sigma_{2}\right)$. This establishes the desired result.
4. $(1+4)$ Subgaussian and subexponential random variables have moments that are growing suitably so that we can have a bound on the MGF. Consider scalar random variables X_{1}, \ldots, X_{n} that are IID samples from some distribution with mean μ. What if all we have is an upper bound on the variance, i.e. $E\left[\left(X_{1}-\mu\right)^{2}\right] \leq \sigma^{2}<\infty$ are there estimators for which we can obtain exponential tail bounds? This is what we will learn through this exercise. Assume $n=m k$ for some positive integers m, k. Divide the data into k disjoint chunks. For each chunk, compute the mean, call this $m_{i}, i=1, \ldots, k$. Let your estimator be $\widehat{\mu}_{n}:=\operatorname{median}\left(\left\{m_{i}\right\}_{i=1}^{k}\right)$. We will show that, for some appropriately picked $k=k_{\delta}$,

$$
\begin{equation*}
P\left(\left|\widehat{\mu}_{n}-\mu\right| \geq c \sigma \sqrt{\frac{\log (1 / \delta)}{n}}\right) \leq \delta \tag{8}
\end{equation*}
$$

where c is a constant.
(a) First show that, for $i \in\{1, \ldots, k\} P\left(\left|m_{i}-\mu\right| \geq \frac{\sigma}{2 \sqrt{m}}\right) \leq 1 / 4$

Solution.
This is just Chebychev's inequality applied to every partition.
(b) Now find a suitable k as a function of δ, such that Eq 8 holds. Hint: Use the definition of a median to frame Eq 8 as a failure probability of a sum of k independent Bernoulli $\left(p_{i}\right)$ RVs with $p_{i} \geq 1 / 4$.

Solution.
Let $N=\left|\left\{i:\left|m_{i}-\mu\right| \geq c \sigma \sqrt{\frac{\log (1 / \delta)}{n}}\right\}\right|$.

$$
p:=P\left(\left|m_{i}-\mu\right| \geq c \sigma \sqrt{\frac{\log (1 / \delta)}{n}}\right)
$$

Note $N \sim \operatorname{Bin}(k, p)$.

$$
\begin{aligned}
P\left(\left|\widehat{\mu}_{n}-\mu\right| \geq c \sigma \sqrt{\frac{\log (1 / \delta)}{n}}\right) & \leq P(N \geq k / 2) \\
& \leq \exp \left(-2(k / 2-k p)^{2} / k\right) \\
& \leq \exp (-k / 8)=: \delta
\end{aligned}
$$

Set $k=\lfloor 8 \log (1 / \delta)\rfloor$. Now subsituting $m=n / k$ gives the result.

$$
P\left(\left|\widehat{\mu}_{n}-\mu\right| \geq 3 \sigma \sqrt{\frac{\log (1 / \delta)}{n}}\right) \leq P\left(\left|\widehat{\mu}_{n}-\mu\right| \geq .5 \sigma \sqrt{\frac{\lfloor 8 \log (1 / \delta)\rfloor}{n}}\right) \leq \delta
$$

