Homework Assignment 2
Due Feb 28th midnight

SDS 384-11 Theoretical Statistics

1. (24241) Consider a r.v. X such that for all A € R

E[eM] < e#H‘“ (1)
Prove that:
(a) E[X]=p.
Solution.
Let f(A) = E[e*X] and let g(\) = e¥*7°/2+M We have f(0) = g(0).
, . h) — f(0 . h) —g(0 ,
f(o):%%f( )hf( ) S’1112%9( )hg( ) — 40
But we also have:
— f(— —g(—=h
f’(0>=}33}) f(0) hf( ) > Jim (0) hg( ) _ J(0)
So f'(0) = ¢’(0). So we have E[X]| = u.
O
(b) var(X) < o2.
Solution.

Let us denote

Mo(A) = exp(— M) M(N)
— Efexp(A(X — )]

and similarly,




Then, by construction, we have that M.(\) < U.(\). Additionally, M.(0) =1 =
U.(0), M”(0) = var(X), and U”(0) = o2. Therefore, we have that

var(X) = M”(0)
M. () + M.(—¢) — 2M_(0)

= lim 5
e—0 I3

iy Me(e) + Mc(2—5) — 2U.(0)
e—0 £

< tim Uel0) + Ue) = 20:(0)
e—0 £

=U;(0)

= 0'2

which establishes the desired inequality.
O

(c) If the smallest value of o satisfying the above equation is chosen, is it true that
var(X) = 02? Prove or give a counter-example.

Solution.
We give a counterexample to establish that o # var(X). Consider X ~ Bern (p).
Then, assuming that 02 = p(1 — p) = var(X), we have that

E [exp (A (X —p))] = pexp(A(1 —p)) + (1 — p) exp(—Ap)
= exp(A(1 —p)) (p+ (1 —p)exp(—A))

Ap(1 —
< exp (p(zp)> by assumed subG bound

— o+ =Py <eo (M- (1)) 2)

1

However, by choosing, for example, A = 7 and p = one can check that

1

167
Ap

p+ (1 —p)exp(—=A) —exp [ A(1 —p) 5 1) ] ~0.0001 >0

which is a contradiction of inequality . Therefore, we cannot always take
0% = var(X).
O

2. (5pts) Given a symmetric positive semidefinite matrix @@ € R™ " consider Z =
Zi, j Qi X;X;. When X; ~ N (0, 1), prove the Hanson-Wright inequality.

P (Z > trace(Q) +t) < exp (— min {e1t/||Qllop, c2t*/[QIIF }) .

where ||Q|lop and ||Q||r denote the operator and frobenius norms respectively.  Useful
facts: Let Ay > Ao > ... denote the eigenvalues of Q. Remember that ||Qllop =
SUDy.|||=1 |QVIl = A1. For a PSD matriz Q, trace(Q) = _; \i, and Q1% = Y, A2
Hint: The rotation-invariance of the Gaussian distribution and sub-exponential nature
of x%-variables could be useful.



3. (54+5+5) We will prove properties of subgaussian random variables here. Prove that:

(a) Moments of a mean zero subgaussian r.v. X with variance proxy o2 satisfy:
E[lX*|] < k220" (k/2), (3)
where I' is the gamma function.

Solution.
We have that, by the Subgaussian assumption,

Muﬁr=4mpwmk>ww
_ /Oo P(|X| > t1/%)dt
0

00 t2
<2 — dt
<2 en(57)

Now, recalling that
o0
I'(z) :/ t*~Lexp(—t)dt,
0
we may perform the change of variables t = az® to obtain:
[o¢]
I'(z) :/ a* 1Pt exp(—ax®)abz’tdzx
0

oo
= azb/ 2% exp(—az®)dzx
0

r(;)=a

5,2 and b= %, we combine our results to obtain:

Thus,

o=

b/ exp(—az®)dx
0

S| =

Now, choosing a =

as desired. O



(b) If X is a mean 0 subgaussian r.v. with variance proxy o2, prove that, X2 —

E[X?] is a subexponential (c102, co0?) (we are using the (v,b) parametrization
of subexponentials we did in class, so 2 is the variance proxy). Here cy,cy are
positive constants. Many people will use E[(X? — [EX]?)*] < E[X?F]. This is
wrong. 1 pt off for this. For those who use the definition of sub-exponentiality
from scratch, if they assume t > 0, take 1/2 point off. See the alternative solution
here.
I am going to give two different solutions here. And point out common
mistakes you may make.The first uses Bernstein’s moment condition.
In class we did a very easy bounded random variable example to show
it is subexponential since it satisfies the bernstein m.c. Here is a far
less trivial example of its use. The second solution gets to the answer
through the definition of sub-exp r.v.s as we saw in class.

Solution.
Here, we wish to apply the Bernstein condition. Observe that

‘E(XQ - IEXQ)’“‘
glE]XQ—IEXQV“ Jensen’s
—E (|x? - EX?" 1{X? > EX%}) + E (| X2 - EX?[" {X? <EX?})

Now, observe that, almost surely,
X2 —EX?F1{X? > EX?} < |X}F1{X? > EX?} since EX2>0
< |X|* since 1{-} <1 a.s.
and similarly,

X2 —EX?*1{X? < EX?} < [EX?F1{X? < EX?} since X2 >0 as.
< |EX2?F since 1{-} <1 a.s.

< E|Xx | by Jensen’s, since | - |* is convex

Note the treatment above. Many of you may bound E[(X? - [EX]?)*] <
E[X?]. This is incorrect, because |X? — E[X?]| < max(X?, E[X?]). T am
gong to take a point off for this, just so that this sticks in our minds.
Finally, note that

var(X?) < EX*
<4-2%'T7(2)
—_ 944

< 2544



Combining these bounds, we have that

E(X? IEXQ)’“‘ < 2R| X |2

< 4k2Fa?* T'(k) by the previous exercise
~—~—
=(k—1)!

1 k—2
= 5/{!2504 (202)

Therefore, by the Bernstein condition, we have that X? is subexponential with
paratmeters (v = 802, b = 40?), as desired.
O

Solution.
Now we will prove the subexponentiality using the MGF. Note that we have
E[X?] < o2

Elexp(A(X? — E[X?))] < exp(=AE[X?]) Elexp(AX?)]
E[sz]

= exp(-AE[X?)) [ 1 + AE[X?] + Z AkT
k>2 '

= exp(—AE[X?)) [ 14+ AE[X?] +2) 280 |A[F
k>2
804\? exp(—AE[X?))

(For |A| < 1/202, we have) = exp(—AE[X?]) (1 + AE[X?]) +
This is < 1 since exp(z)>1+a
(For |A| < 1/40%, we have) < 14 160 2 exp(|\|o?) < 1 + 160*\? exp(1/4)
B[X?]<o? IA[<1/402
<14 2°0%0\? < exp((4v20%)2\?)

exp(z)>1+x

1 —202|)\|

So we have X2 — E[X?] is sub exponential (802,402).
O

Consider two independent mean zero subgaussian r.v.s X; and Xy with variance
proxies 02 and o3 respectively. Show that X; X5 is a subexponential r.v. with
parameters (djo109,ds0102). Here dj,dy are positive constants. Again, here
also, I think most people will get the right answer if they end up proving it. So
full score unless you see obvious mistakes.

Solution.



Observe that,

E[(X1 Xy — E[X1 Xo))¥] = E[(X1 Xo — E[X|E[X2])¥] by independence
= E[(X1X2)"] mean 0
< E[| X1 X|"]
= E[| X1 [ME[| X2|¥] independence
< </<:2k/2a’fl“ (g)) (m’f/%’gr (g)) by part 1

Now, recall that, for k£ an odd integer,

o(z)-r([2)+32)
k
- f4ug/2h;£/); 1!
- ‘F4k52 Lk:/12)J

Thus, we have that

() e

< k!
— 7k! < 4F|k/2)! (5)

Now, note that is true for sufficiently large k. Similarly, when k is even,

so we have that

< k! (6)
k
k 2
— k<2—1>!§ 1:[1(/-@—2)
k—122 &
— —1
— 1< 7
gg—l—l—z (™)



Observe that @ is true for sufficiently large k. Therefore, there exists a universal
constant C' such that

2
< Ck'128(0109)"
1

< §k!(0102)2(6’0102)k

E[(X1 Xy — E[X1X,))¥] = <kF <k>>2 2k (o109)?

For sufficiently large C. Therefore, since var(X;Xs) < o203, by Bernstein’s

theorem, X7 X5 is subexponential with parameters (v = V20109,b = 2@0102).
This establishes the desired result.
L]

4. (144) Subgaussian and subexponential random variables have moments that are grow-
ing suitably so that we can have a bound on the MGF. Consider scalar random vari-
ables X1,..., X, that are IID samples from some distribution with mean p. What
if all we have is an upper bound on the variance, i.e. E[(X; — p)?] < 0% < oo -
are there estimators for which we can obtain exponential tail bounds? This is what
we will learn through this exercise. Assume n = mk for some positive integers m, k.
Divide the data into k£ disjoint chunks. For each chunk, compute the mean, call this
mi, i = 1,...,k. Let your estimator be fi, := median({m;}*_,). We will show that,
for some appropriately picked k = ks,

P(ﬁn—u|zca bg(lm) <4 (8)

n

where ¢ is a constant.

(a) First show that, for i € {1,...,k} P (|m, —pul > ﬁ) <1/4

Solution.
This is just Chebychev’s inequality applied to every partition. O

(b) Now find a suitable k as a function of d, such that Eq [8 holds. Hint: Use
the definition of a median to frame Eq[§ as a failure probability of a sum of k
independent Bernoulli(p;) RVs with p; > 1/4.

Solution.
Let N = ‘{i s |mg — p| > co log(i/&}'

n

p::P<‘mi—M’an l()g(1/5)>



Note N ~ Bin(k,p).

P (!ﬁn —pl > o lg(j/(”> < P(N > k/2)

< exp(—2(k/2 — kp)?/k)

Set k = [8log(1/d)|. Now subsituting m = n/k gives the result.

P(Iﬂn—uz3a log$/5)> gP(!ﬁn—ulzba W) <4




