Homework Assignment 2

Due Feb 28th midnight

SDS 384-11 Theoretical Statistics

1. Consider a r.v. X such that for all $\lambda \in \mathbb{R}$

$$
\begin{equation*}
E\left[e^{\lambda X}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}+\lambda \mu} \tag{1}
\end{equation*}
$$

Prove that:
(a) $E[X]=\mu$.
(b) $\operatorname{var}(X) \leq \sigma^{2}$.
(c) If the smallest value of σ satisfying the above equation is chosen, is it true that $\operatorname{var}(X)=\sigma^{2}$? Prove or give a counter-example.
2. Given a symmetric positive semidefinite matrix $Q \in \mathbb{R}^{n \times n}$, consider $Z=\sum_{i, j} Q_{i j} X_{i} X_{j}$. When $X_{i} \sim N(0,1)$, prove the Hanson-Wright inequality.

$$
P(Z \geq \operatorname{trace}(Q)+t) \leq \exp \left(-\min \left\{c_{1} t /\|Q\|_{o p}, c_{2} t^{2} /\|Q\|_{F}^{2}\right\}\right),
$$

where $\|Q\|_{o p}$ and $\|Q\|_{F}$ denote the operator and frobenius norms respectively. Useful facts: Let $\lambda_{1} \geq \lambda_{2} \geq \ldots$ denote the eigenvalues of Q. Remember that $\|Q\|_{o p}=$ $\sup _{v:\|v\|=1}\|Q v\|=\lambda_{1}$. For a PSD matrix Q, $\operatorname{trace}(Q)=\sum_{i} \lambda_{i}$, and $\|Q\|_{F}^{2}=\sum_{i} \lambda_{i}^{2}$. Hint: The rotation-invariance of the Gaussian distribution and sub-exponential nature of χ^{2}-variables could be useful.
3. We will prove properties of subgaussian random variables here. Prove that:
(a) Moments of a mean zero subgaussian r.v. X with variance proxy σ^{2} satisfy:

$$
\begin{equation*}
E\left[\left|X^{k}\right|\right] \leq k 2^{k / 2} \sigma^{k} \Gamma(k / 2) \tag{2}
\end{equation*}
$$

where Γ is the gamma function.
(b) If X is a mean 0 subgaussian r.v. with variance proxy σ^{2}, prove that, $X^{2}-$ $E\left[X^{2}\right]$ is a subexponential $\left(c_{1} \sigma^{2}, c_{2} \sigma^{2}\right)$ (we are using the (ν, b) parametrization of subexponentials we did in class, so ν^{2} is the variance proxy). Here c_{1}, c_{2} are positive constants.
(c) Consider two independent mean zero subgaussian r.v.s X_{1} and X_{2} with variance proxies σ_{1}^{2} and σ_{2}^{2} respectively. Show that $X_{1} X_{2}$ is a subexponential r.v. with parameters $\left(d_{1} \sigma_{1} \sigma_{2}, d_{2} \sigma_{1} \sigma_{2}\right)$. Here d_{1}, d_{2} are positive constants.
4. Subgaussian and subexponential random variables have moments that are growing suitably so that we can have a bound on the MGF. Consider scalar random variables X_{1}, \ldots, X_{n} that are IID samples from some distribution with mean μ. What if all we have is an upper bound on the variance, i.e. $E\left[\left(X_{1}-\mu\right)^{2}\right] \leq \sigma^{2}<\infty$ - are there estimators for which we can obtain exponential tail bounds? This is what we will learn through this exercise. Assume $n=m k$ for some positive integers m, k. Divide the data into k disjoint chunks. For each chunk, compute the mean, call this m_{i}, $i=1, \ldots, k$. Let your estimator be $\widehat{\mu}_{n}:=\operatorname{median}\left(\left\{m_{i}\right\}_{i=1}^{k}\right)$. We will show that, for some appropriately picked $k=k_{\delta}$,

$$
\begin{equation*}
P\left(\left|\widehat{\mu}_{n}-\mu\right| \geq c \sigma \sqrt{\frac{\log (1 / \delta)}{n}}\right) \leq \delta \tag{3}
\end{equation*}
$$

where c is a constant.
(a) First show that, for $i \in\{1, \ldots, k\} P\left(\left|m_{i}-\mu\right| \geq 2 \frac{\sigma}{\sqrt{m}}\right) \leq 1 / 4$
(b) Now find a suitable k as a function of δ, such that Eq 3 holds. Hint: Use the definition of a median to frame Eq 3 as a tail bound on a sum of k independent $\operatorname{Bernoulli}\left(p_{i}\right)$ RVs with $p_{i} \leq 1 / 4$.

