Homework Assignment 5 Due Apr 27th by midnight

SDS 384-11 Theoretical Statistics

1. In this exercise, we explore the connection between VC dimension and metric entropy. Given a set class S with finite VC dimension ν , we show that the function class $\mathcal{F}_S := \mathbf{1}_S, S \in S$ of indicator functions has metric entropy at most

$$N(\delta; \mathcal{F}_{\mathcal{S}}, L^{1}(P)) \leq \left(\frac{K \log(3e/\delta)}{\delta}\right)^{\nu} \quad \text{For a constant } K$$
(1)

Let $\{1_{S^1}, \ldots, 1_{S^N}\}$ be a maximal delta packing in the $L^1(P)$ norm, so that:

$$||1_{S_i} - 1_{S_j}||_1 = E[|1_{S_i}(X) - 1_{S_j}(X)|] > \delta \quad \text{for all } i \neq j$$

This is an upper bound on the δ covering number.

- (a) Suppose that we generate n samples X_i , i = 1, ..., n drawn i.i.d. from P. Show that the probability that every set S_i picks out a different subset of $\{X_1, ..., X_n\}$ is at least $1 \binom{N}{2}(1-\delta)^n$.
- (b) Using part (a), show that for $N \ge 2$ and $n = \lceil 2 \log N/\delta \rceil$, there exists a set of *n* points from which *S* picks out at least N subsets, and conclude that $N \le \left(\frac{3e \log N}{\nu \delta}\right)^{\nu}$.
- (c) Use part (b) to show that Eq (1) holds with $K := 3e^2/(e-1)$. Hint: Note that you have $\frac{N^{1/\nu}}{\log N} \leq \frac{3e}{\nu\delta}$. Let $g(x) = x/\log x$. We are solving for $g(m^{1/\nu}) \leq 3e/\delta$. Prove that $g(x) \leq y$ implies $x \leq \frac{e}{e-1}y\log y$.
- 2. We will find the covering number of ellipses in this problem. Given a collection of positive numbers $\{\mu_j, j = 1 \dots d\}$, consider the ellipse

$$\mathcal{E} = \{\theta \in \mathcal{R}^d : \sum_i \theta_i^2 / \mu_i^2 \le 1\}$$

(a) Show that

$$\log N(\epsilon; \mathcal{E}, \|.\|_2) \ge d \log(1/\epsilon) + \sum_{j=1}^d \log \mu_j$$

(b) Now consider an infinite-dimensional ellipse, specified by the sequence $\mu_j = j^{-2\beta}$ for some parameter $\beta > 1/2$. Show that

$$\log N(\epsilon; \mathcal{E}, \|.\|_2) \ge C \left(\frac{1}{\epsilon}\right)^{1/2\beta}$$

where $\|\theta - \theta'\|_{\ell_2}^2 = \sum_{j=1}^{\infty} (\theta_i - \theta_j)^2$ is the squared ℓ_2 -norm on the space of square summable sequences.

3. Consider the set $\mathbb{S}^d(s) = \{\theta \in \mathbb{R}^d : \|\theta\|_0 \le s, \|\theta\|_2 \le 1\}$ corresponding to all *s*-sparse vectors in the unit Euclidean ball. We will prove that the Gaussian complexity of this class is upper bounded by

$$\mathcal{G}(\mathbb{S}^d(s)) \le C\sqrt{s\log(ed/s)} \tag{2}$$

- (a) Show that $\mathcal{G}(\mathbb{S}^d(s)) = E[\max_{|S|=s} ||w_S||_2]$ where $w_S \in \mathbb{R}^{|S|}$ is the sub-vector of (w_1, \ldots, w_d) indexes by $S \subset \{1, \ldots, d\}$.
- (b) Show that any fixed subset S with |S| = s,

$$P(||w_S|| \ge \sqrt{s} + \delta) \le \exp(-\delta^2/2).$$

(c) Use part (b) to establish Eq 2.