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Efron Stein inequality

Consider n independent random variables in some metric space .

Consider a function g: X" - R

Let Z :=g(Xq,...,Xn)

e We are interested in computing var(g(Xq,...,Xn))
Define Ei(2) = E[Z|X1:i—17Xi+1:n]



An upper bound

Theorem

var(Z) < an E(Z - E[Z])?
i=1

e Note that the RHS can be thought of sum of expectation of
conditional variances

e Since var(X) < E[(X — a)?], we also have:

var(Z) < Z E(Z -7z,
i=1

where Z,' = g(Xl,. .. 7Xl'—17Xi+17 .. .,Xn)



An upper bound

Theorem

wr2) < S ElZ - ElZ]P
i=1

Proof.

e For two arbitrary bounded random variables X, Y, we have:
E[XY] = E[E[XY|Y]] = E[YE[X|Y]]
o Let V=27 - E[Z]
o Let V;:= E[Z|Xy ;] — E[Z]X.j—1]
e Clearly V = Z V;
i



Proof continued

2
var(Z) = [Z V] (1)
- ZE[Vz] +23 E[V;Vj] =Y E[V7] (2)

i<j

e Why is the last step true? For i > j

E[V;Vj] = E[E[V; VjIX1,. ... X;]
— E[V,EV)IX1,.... X;]] = 0



e Note that for three independent random variables X, Y, Z

Elg(X, Y, 2)|X] = E[E[g(X, Y, 2)|X, Z]|X, Y]

LHS — /y ey (. 2z = [ ( /y g(x, v, 2)f(y|x, 2)dy)F(zlx)dz

:/ZE[g(x, Y, 2)IX, Z]f(z]x)dz

independence /

z

Elg(X,Y,Z)|X, Z]f(z|x, y)dz

= E[E[g(X, Y, 2)|X, Z]|X, Y]



VP = (E[Z|Xy./] — E[ZIX1i-1])°
= (E[Z|Xq1.1] — E[Z|X1:i—1])?
= (E[E[Z|X1.n]|X1:1] = EIEIZ| X131, Xi1:0]1X0:1])°
(E[E[Z|Xy:p] = E[Z|X1.i—1, Xi g 1:0]1X1:1])
(E[Z - E;Z|Xy.))°
E(Z — £:2)°|Xy./]
E[(Z - £2)°]

<
E[V7] <



The Efron Stein inequality

Theorem

Let X{, ... Xp denote an independent copy of Xy,...,Xn. Let
Z; = g(Xy.i—1, X, Xit1:n)- We have:

var(Z) < Z El[(Zz - Z)

Proof.

E[X — Y)?
2
e Conditioned on X.;_1, X, 1.n, Z and Z; are independent and so

e If X, Y areiid, var(X) =

1z — 7112
Eiz - g1z = AL

n 112
var(2) <Y E[Z-E[ZIP =) w

i=1 i



For g(X1,...,Xn) = ZX,- we have an equality.
i
e So in some sense, sums of independent random variables are the

least concentrated functions

Consider a function with the Bounded Difference property, i.e.

/
sup  [g(x1,--,xn) — g(x1.j—1XiXit+1:0)| <
Xl:n7X,{€X

We have:

var(g(x)) < 5 >_ ¢

i



Example: longest common subsequence

Let Xy,...,Xn and Yq,..., Yn be two sequences of coin flips. Z is the
length of the longest common subsequence.

Z:max{k:X,-lej 5 X :Y-k}

1 =Y
where 1 <iqp <ip...and 1<ji <jo....

e It is well known that E[Z]/n — 1 where u € [0.757,0.837].

e If you change one bit of X, it can change Z by at most one, so,

var(Z) <n

e So Z concentrates around its mean.



Uniform deviation

For Xi,...,Xn iid random variables, let Pp(A) = %ZI(X; € A) and

Pn(A) = P(X; € A). We are interested in te quantityl
Z :=sup|Pn(A) — Pn(A)|
A
e If we change one X;, Z changes by 1/n at most.
e Sovar(Z) < 2—1n by the Efron Stein inequality.

e Can we do better?
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Uniform deviation

For Xi,...,Xn iid random variables, let
Z = supper Y _F(X))
J
For simplicity, assume Ef[X;] = 0. We will show that the E/S inequality
gives a much tighter upper bound that the one we just derived.

o var(Z) < ZE[(Z 73
e Say 1" ach|eves the supremum for Z and £ achieves the supremum
for Z!
fe (X)) = £(X]) < Z = Zj < £7(X) = £7(X])
(Z = Z]? < max((£ (X)) = B(XD)2 (FF (X)) = £ (X))

< sup (F(X;) — F(X}))?
fer

11



Uniform deviation

var(Z) < Z E [sup (F(X;) — F(XD))?

< E | sup( +f( ))
Z fe]-"

<2 E sup f(X)
S

o (i) uses [2ab] < a® + b?

o If f(X;) € [-1,1] we get var(Z) < 2n

e But if the variance of sup f(X;) is small we have a significant
f

improvement.
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Triangles again!

e Let Z={A;} and let S be all three tuples of nodes.

g(2) = Z AUAJkA/k
iJ, k€S3

e Create Z,{j by changing A;; by an independent copy.
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Triangles again!

o g(Z)— g(Z,{j) is simply

g(2)—g(Zj) = > (Aj — ADAikAjk
Py

2
El(g(2) - 8(2})*] = E(Aj — Aj)°E [ > A,-kA,-k]
k#ij
=2p(1—p) [ Y EARA+ Y EARAKA AL
k#i7] k#K! i
~ Cp(1 - p) [npz + n2p4}

e So, upper bound on variance is roughly n3p3(1 —p)+ n4p5(1 -p),
which matches the variance up-to a constant.
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Minimum of empirical loss

Consider a function class F of binary valued functions on some space X
Given an iid sample (X;, Y;) € X x {0,1}, for each f € F we define the
empirical loss:
1 n
/
Ln(f) == U(f(X)),Y;)  where ((y,y') =1(y #')

:E,
i=1

Define the empirical loss as L = inf_Ln(f).
feF

e Naive application of Efron Stein shows var(L) < 2/n

e |s this enough?

15



Minimum of empirical loss

Let Z = nL
. NN,
Let Z; = ;nl-r;__ (lzf(f(xj), YJ) +L(F(X}), Y/))

var(Z) < ZE[Z Zl? _ZE[(Z Zh21(Z > 7)]

Note that

0> (Z—2Z)UZ{ > Z) = (((F(X7), Vi) — LF (X)), '))1(2' > Z)
So (Z - ZY’U(Z} > Z) < (UF(X). Vi) — U (X)), Y))*1UZ] > 2) <
UF(X7), YOLE(F (X)), Vi) = 0)

So, EY (2~ 217> 2) < E > Exr yrU(F7 (X)), ;) <
i (=0
nEL(f")

Often you can show that EL(f*) = EL + O(n~1/?)

So var(L) < % + o(1)
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Self bounding functions

Definition

A non-negative function g : X" — R has the self bounding property if
there exist functions g; : X" 5 R such that for all X{,.--,Xn € X and
i € [n],

® 0<g(x1,--,xn) — gi(x1:j—1,Xj41:n) < 1

> (glxas- -y xn) — gi(x1:i—1, Xit1:n)) < &(x1,- -+, Xn)

i

Clearly, > (g(x1:) — gi(xi 1. %11:0)) < g(x1, .- xn) = Z
i

Now Theorem 1 gives:

var(2) < 3 E(Z-E12])°] < 37 ENZ-gi(0i-1%i4+1:0))°] < Elg(x1:n)]

1 1

So var(Z) < E[Z]
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Concentration of self bounding functions

Theorem

Consider Z := g(Xq,...,Xn) where Xy, ..., Xn are independent random
variables. If g is self-bounding, then, for all t > 0,

2
P(Z > E[Z] +t) < exp <_2(EZt+t/3)>

P(Z < E[Z] - 1) < exp (—;;)
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Relative Stability

e A sequence of non-negative random variables {Zn} are said to be
relatively stable if Z,/E[Zn] L

e If Z, also satisfies the self bounding property,

Zn Var(Zn) 1
P ('E[Zn] -z 6) = 2E[Zn]2 = 2E[Zn]

e So as long as E[Zn] — oo, Zp satisfies the relative stability condition

10



Example: empirical processes

Consider a function class F of functions in [0,1]. Z := sup Z f(X;). We
fFeF <

show that Z is self bounding.
o Let Z; := sup Zf(X,-)
fe]—'j#i

e Let " maximize Z and f; maximize Z;

e Wehave 0< f(X;) <Z—-Z < f"(X;) <1
Sod (Z-7)<> f(X)=2Z
i

1

Hence var(Z) < E[Z], while a naive application of E-S will give us
var(Z) < n/2
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Rademacher averages

Consider a function class F of functions in [-1,1]. Let {¢;}] denote n
independent Rademacher variables independent of Xi,..., Xn. The
conditional Rademacher average is defined as

z —E[sup Zef |X1,,]

feF

Z has the self bounding property and so var(Z) < E[Z].

e Define Z; := E | sup E F(X;) [X1:n
FEF j#i
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Rademacher avg cont.

e Let f* maximize Z and f; maximize Z;. Note that:

Z - Z; < Ele;f (Xj)| X1:p) < 1

On the other hand,

Z —Z; > E[jfi(Xj)|X1.n] =0

The last step is true because ?
SoY (z-2z)<Z
i

Hence Z has the self-bounding property and has var(Z) < E[Z]

i)
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