SDS 384 11: Theoretical Statistics
 Lecture 1: Introduction

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Manegerial Stuff

- Instructor- Purnamrita Sarkar
- Course material and homeworks will be posted under https://psarkar.github.io/teaching/sds384.html
- Homeworks are due Biweekly
- Grading - 4-5 homeworks (60%), class participation (10\%) Final Exam (30\%)
- Books
- Asymptotic Statistics, Aad van der Vaart. Cambridge. 1998.
- Martin Wainwright's High dimensional statistics: A non-asymptotic view point

Why do theory?

- Say you have estimated $\hat{\theta}_{n}$ from data X_{1}, \ldots, X_{n}. How do we know we have a "good" estimation method?
- Does $\hat{\theta}_{n} \rightarrow \theta$? This brings us to Stochastic Convergence.
- How about the rate of convergence?
- Can we give any guarantees on how quickly our estimate converges?

$$
P\left(\left|\hat{\theta}_{n}-\theta\right|=\text { large }\right)=\text { small }
$$

This class

Your instructor "hopes to cover":

- Consistency of parameter estimates
- Stochastic Convergence
- Concentration inequalities
- Asymptotic normality of estimators
- Empirical processes, VC classes, covering numbers
- Examples of network clustering with a bit of random matrix theory
- Bootstrap, Nonparametric regression and density estimation

Stochastic Convergence

Assume that $X_{n}, n \geq 1$ and X are elements of a separable metric space (S, d).

Definition (Weak Convergence)
A sequence of random variables converge in "law" or in "distribution" to a random variable X, i.e. $X_{n} \xrightarrow{d} X$ if $P\left(X_{n} \leq x\right) \rightarrow P(X \leq x) \forall x$ at which $P(X \leq x)$ is continuous.

Stochastic Convergence

Assume that $X_{n}, n \geq 1$ and X are elements of a separable metric space (S, d).

Definition (Weak Convergence)
A sequence of random variables converge in "law" or in "distribution" to a random variable X, i.e. $X_{n} \xrightarrow{d} X$ if $P\left(X_{n} \leq x\right) \rightarrow P(X \leq x) \forall x$ at which $P(X \leq x)$ is continuous.

Definition (Convergence in Probability)
A sequence of random variables converge in "probability" to a random variable X, i.e. $X_{n} \xrightarrow{P} X$ if $\forall \epsilon>0, P\left(d\left(X_{n}, X\right) \geq \epsilon\right) \rightarrow 0$.

Stochastic Convergence

Assume that $X_{n}, n \geq 1$ and X are elements of a separable metric space (S, d).

Definition (Almost Sure Convergence)
A sequence of random variables converges almost surely to a random variable X, i.e. $X_{n} \xrightarrow{\text { a.s. }} X$ if $P\left(\lim _{n \rightarrow \infty} d\left(X_{n}, X\right)=0\right)=1$.

- If you think about a (scalar) random variable as a function that maps events to a real number, almost sure convergence means

$$
P\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1
$$

Definition (Convergence in quadratic mean)
A sequence of random variables converges in quadratic mean to a random variable X, i.e. $X_{n} \xrightarrow{q . m} X$ if $E\left[d\left(X_{n}, X\right)^{2}\right] \rightarrow 0$.

Unwinding a.s. convergence

- $X_{n} \xrightarrow{\text { a.s. }} X$ implies $P\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1$
- What does convergence mean for a sequence of real numbers?

Unwinding a.s. convergence

- $X_{n} \xrightarrow{\text { a.s. }} X$ implies $P\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1$
- What does convergence mean for a sequence of real numbers?
- $\forall \epsilon>0, \exists n, \forall m \geq n,\left|X_{n}(\omega)-X(\omega)\right|<\epsilon$
- Consider a sequence of events A_{1}, \ldots, A_{n},

$$
A_{n}=\left\{\left|X_{n}(\omega)-X(\omega)\right|<\epsilon\right\}
$$

Unwinding a.s. convergence

- $X_{n} \xrightarrow{\text { a.s. }} X$ implies $P\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1$
- What does convergence mean for a sequence of real numbers?
- $\forall \epsilon>0, \exists n, \forall m \geq n,\left|X_{n}(\omega)-X(\omega)\right|<\epsilon$
- Consider a sequence of events A_{1}, \ldots, A_{n},

$$
A_{n}=\left\{\left|X_{n}(\omega)-X(\omega)\right|<\epsilon\right\}
$$

- $\forall \epsilon>0, \exists n$, s.t. $\forall m \geq n,\left|X_{n}(\omega)-X(\omega)\right|<\epsilon$, boils down to:

$$
\bigcup_{i=1}^{n} \bigcap_{m \geq n} A_{m}
$$

Unwinding a.s. convergence

- $X_{n} \xrightarrow{\text { a.s. }} X$ implies $P\left(\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right)=1$
- What does convergence mean for a sequence of real numbers?
- $\forall \epsilon>0, \exists n, \forall m \geq n,\left|X_{n}(\omega)-X(\omega)\right|<\epsilon$
- Consider a sequence of events A_{1}, \ldots, A_{n},

$$
A_{n}=\left\{\left|X_{n}(\omega)-X(\omega)\right|<\epsilon\right\}
$$

- $\forall \epsilon>0, \exists n$, s.t. $\forall m \geq n,\left|X_{n}(\omega)-X(\omega)\right|<\epsilon$, boils down to:

$$
\bigcup_{i=1}^{n} \bigcap_{m \geq n} A_{m}
$$

- Another way of saying this is, A_{n}^{c} happens finitely often. (f.o.)
- $X_{n} \xrightarrow{\text { d.s. }} X$ implies $\forall \epsilon>0, P\left(\left\{\left|X_{n}-X\right| \geq \epsilon\right.\right.$ f.o. $\left.\}\right)=1$

Stochastic Convergence

Theorem

$$
\begin{aligned}
x_{n} \xrightarrow{\text { a.s. }} x, x_{n} \xrightarrow{\text { q.m. }} x & \Rightarrow x_{n} \xrightarrow{P} x \Rightarrow x_{n} \xrightarrow{d} x \\
x_{n} \xrightarrow{d} c & \Rightarrow x_{n} \xrightarrow{P} c
\end{aligned}
$$

Converses: $X_{n} \xrightarrow{d} X \nRightarrow X_{n} \xrightarrow{P} X$

- Convergence in law needs no knowledge of the joint distribution of X_{n} and the limiting random variable X.
- Convergence in probability does.

Example

Consider $X \sim N(0,1), X_{n}=-X . X_{n} \xrightarrow{d} X$. But how about $X_{n} \xrightarrow{P} X$?

Converses: $X_{n} \xrightarrow{d} X \nRightarrow X_{n} \xrightarrow{P} X$

- Convergence in law needs no knowledge of the joint distribution of X_{n} and the limiting random variable X.
- Convergence in probability does.

Example

Consider $X \sim N(0,1), X_{n}=-X . X_{n} \xrightarrow{d} X$. But how about $X_{n} \xrightarrow{P} X$?

- $P\left(\left|X_{n}-X\right| \geq \epsilon\right)=P(2|X| \geq \epsilon) \nrightarrow 0 \forall \epsilon>0$. So X_{n} does not converge in probability to X.

Example

Example

Let $Z \sim U(0,1)$ and for $n=2^{k}+m$ for $k \geq 0,0 \leq m<2^{k}$ $X_{n}=1\left(Z \in\left[m 2^{-k},(m+1) 2^{-k}\right]\right)$, i.e. $X_{1}=1, X_{2}=1(Z \in[0,1 / 2))$, $x_{3}=1(Z \in[1 / 2,1)), x_{4}=1(Z \in[0,1 / 4)), x_{5}=1(Z \in[1 / 4,1 / 2))$.

Example

Example

Let $Z \sim U(0,1)$ and for $n=2^{k}+m$ for $k \geq 0,0 \leq m<2^{k}$ $X_{n}=1\left(Z \in\left[m 2^{-k},(m+1) 2^{-k}\right]\right)$, i.e. $X_{1}=1, X_{2}=1(Z \in[0,1 / 2))$, $X_{3}=1(Z \in[1 / 2,1)), X_{4}=1(Z \in[0,1 / 4)), X_{5}=1(Z \in[1 / 4,1 / 2))$.

- For any $Z \in(0,1)$, the sequence $\left\{X_{n}(Z)\right\}$ does not converge. So $X_{n} \xrightarrow{\text { a.s. }} 0$.

Example

Example

Let $Z \sim U(0,1)$ and for $n=2^{k}+m$ for $k \geq 0,0 \leq m<2^{k}$
$X_{n}=1\left(Z \in\left[m 2^{-k},(m+1) 2^{-k}\right]\right)$, i.e. $X_{1}=1, X_{2}=1(Z \in[0,1 / 2))$,
$X_{3}=1(Z \in[1 / 2,1)), X_{4}=1(Z \in[0,1 / 4)), X_{5}=1(Z \in[1 / 4,1 / 2))$.

- For any $Z \in(0,1)$, the sequence $\left\{X_{n}(Z)\right\}$ does not converge. So $X_{n} \xrightarrow{\text { a/s. }} 0$.
- For any $\epsilon>0, P\left(\left\{\left|X_{n}\right|>\epsilon\right\}\right.$ i.o. $)$
- X_{n} are a sequence of bernoulli's with probabilities $p_{n}=1 / 2^{k}$ where $k=\lfloor\log n\rfloor$.

Example

Example

Let $Z \sim U(0,1)$ and for $n=2^{k}+m$ for $k \geq 0,0 \leq m<2^{k}$
$X_{n}=1\left(Z \in\left[m 2^{-k},(m+1) 2^{-k}\right]\right)$, i.e. $X_{1}=1, X_{2}=1(Z \in[0,1 / 2))$,
$X_{3}=1(Z \in[1 / 2,1)), X_{4}=1(Z \in[0,1 / 4)), X_{5}=1(Z \in[1 / 4,1 / 2))$.

- For any $Z \in(0,1)$, the sequence $\left\{X_{n}(Z)\right\}$ does not converge. So $X_{n} \xrightarrow{\text { a,s. }} 0$.
- For any $\epsilon>0, P\left(\left\{\left|X_{n}\right|>\epsilon\right\}\right.$ i.o. $)$
- X_{n} are a sequence of bernoulli's with probabilities $p_{n}=1 / 2^{k}$ where $k=\lfloor\log n\rfloor$.
- So $x_{n} \xrightarrow{P} 0$ and $x_{n} \xrightarrow{q m} 0$

Example

Example

Let $Z \sim U([0,1])$ and $X_{n}=2^{n} 1(Z \in[0,1 / n))$. Does X_{n} converge to $X=0$ in quadratic mean, almost surely or in probability?

Example

Example

Let $Z \sim U([0,1])$ and $X_{n}=2^{n} 1(Z \in[0,1 / n))$. Does X_{n} converge to $X=0$ in quadratic mean, almost surely or in probability?

- $P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=P(Z>0)=1$. So $X_{n} \xrightarrow{\text { a.s. }} X$.

Example

Example

Let $Z \sim U([0,1])$ and $X_{n}=2^{n} 1(Z \in[0,1 / n))$. Does X_{n} converge to $X=0$ in quadratic mean, almost surely or in probability?

- $P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=P(Z>0)=1$. So $X_{n} \xrightarrow{\text { a.s. }} x$.
- $E\left|X_{n}\right|^{2}=2^{2 n} / n \rightarrow \infty$. So $X_{n} \xrightarrow{q m} 0$

Example

Example

Let $Z \sim U([0,1])$ and $X_{n}=2^{n} 1(Z \in[0,1 / n))$. Does X_{n} converge to $X=0$ in quadratic mean, almost surely or in probability?

- $P\left(\lim _{n \rightarrow \infty} X_{n}=X\right)=P(Z>0)=1$. So $X_{n} \xrightarrow{\text { a.s. }} X$.
- $E\left|X_{n}\right|^{2}=2^{2 n} / n \rightarrow \infty$. So $X_{n} \xrightarrow{q m} 0$
- $P\left(\left|X_{n}\right| \geq \epsilon\right)=P\left(X_{n}=2^{n}\right)=P(Z \in[0,1 / n))=1 / n \rightarrow 0$

Borel Cantelli

- $X_{n} \xrightarrow{\text { a.s. }} X$ implies $\forall \epsilon>0, P\left(\left\{\left|X_{n}-X\right| \geq \epsilon\right.\right.$ i.o. $\left.\}\right)=0$

Borel Cantelli

- $X_{n} \xrightarrow{\text { a.s. }} X$ implies $\forall \epsilon>0, P\left(\left\{\left|X_{n}-X\right| \geq \epsilon\right.\right.$ i.o. $\left.\}\right)=0$
- Consider a sequence of events A_{1}, \ldots, A_{n}.
- Infinitely often means $\forall n, \exists m \geq n$, s.t. A_{m} occurs.
- More concretely

$$
\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}
$$

Borel Cantelli Lemma (I)

Theorem
If $\sum_{i} P\left(A_{i}\right)<\infty$, then $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=0$.

Example

Let $X_{n} \sim \operatorname{Bernoulli}\left(2^{-n}\right)$. Then $X_{n} \xrightarrow{\text { a.s. }} 0$.
Check if $X_{n}=1$ infinitely often.

Borel Cantelli Lemma (I)

Theorem
 If $\sum_{i} P\left(A_{i}\right)<\infty$, then $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=0$.

- Recall that $\left\{A_{n}\right.$ i.o. $\}$ is equivalent to $\bigcap_{n=1}^{\infty} \underbrace{\bigcup_{m=n}^{\infty} A_{m}}_{B_{n}}$

Borel Cantelli Lemma (I)

Theorem

If $\sum_{i} P\left(A_{i}\right)<\infty$, then $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=0$.

- Recall that $\left\{A_{n}\right.$ i.o. $\}$ is equivalent to $\bigcap_{n=1}^{\infty} \underbrace{\bigcup_{m=n}^{\infty} A_{m}}_{B_{n}}$
- Note that $B_{n+1} \subseteq B_{n}$, and so we have $B_{n} \downarrow B:=\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} A_{m}$, hence using monotone convergence we have:

$$
\lim _{n \rightarrow \infty} P\left(B_{n}\right)=P(B)
$$

Borel Cantelli Lemma (I)

Theorem

If $\sum_{i} P\left(A_{i}\right)<\infty$, then $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=0$.

$$
P\left(A_{i} \text { i.o. }\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right) \leq \lim _{n \rightarrow \infty} \sum_{m \geq n} P\left(A_{m}\right)=0
$$

Borel Cantelli Lemma (I) application

Theorem
Consider X_{1}, \ldots, X_{n} iid mean zero random variables with $E X_{i}^{4}<\infty$. Prove that $\sum_{i} x_{i} / n \xrightarrow{\text { a.s. }} 0$.

Borel Cantelli Lemma (I) application

Theorem
Consider X_{1}, \ldots, X_{n} iid mean zero random variables with $E X_{i}^{4}<\infty$. Prove that $\sum_{i} x_{i} / n \xrightarrow{\text { a.s. }} 0$.

Proof.

Let $S_{n}=\sum_{i=1}^{n} x_{i}$.
Let $A_{i}=\left\{S_{i} \geq n \epsilon\right\}$ for some $\epsilon>0$
Show that $\forall \epsilon>0, P\left(A_{n}\right.$ happens i.o. $)=0$.

Borel Cantelli Lemma (II)

Theorem
If $\sum_{i} P\left(A_{i}\right)=\infty$ and $\left\{A_{n}\right\}$ are independent then $P\left(\left\{A_{n}\right.\right.$ i.o. $\left.\}\right)=1$.

Borel Cantelli Lemma (II)

- Start with the complement - we will show $P\left(\left(A_{i} \text { i.o. }\right)^{c}\right)=0$.

Borel Cantelli Lemma (II)

- Start with the complement - we will show $P\left(\left(A_{i} \text { i.o. }\right)^{c}\right)=0$.

$$
\begin{aligned}
P\left(\left(A_{i} \text { i.o. }\right)^{c}\right) & =P\left(\bigcup_{n} \bigcap_{m \geq n} A_{m}^{c}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\bigcap_{m \geq n} A_{m}^{c}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{m \geq n} P\left(A_{m}^{c}\right) \\
& =\lim _{n \rightarrow \infty} \prod_{m \geq n}\left(1-P\left(A_{m}\right)\right) \\
& \leq \lim _{n \rightarrow \infty} \exp \left(-\sum_{m \geq n} P\left(A_{m}\right)\right)=0
\end{aligned}
$$

Continuous Mapping Theorem

Theorem
Let g be continuous on a set C where $P(X \in C)=1$. Then,

$$
\begin{aligned}
& X_{n} \xrightarrow{d} X \Rightarrow g\left(X_{n}\right) \xrightarrow{d} g(X) \\
& X_{n} \xrightarrow{P} X \Rightarrow g\left(X_{n}\right) \xrightarrow{P} g(X) \\
& X_{n} \xrightarrow{\text { a.s. }} X \Rightarrow g\left(X_{n}\right) \xrightarrow{\text { a.s. }} g(X)
\end{aligned}
$$

Example

Let $X_{n} \xrightarrow{d} X$ where $X \sim N(0,1)$. Then $X_{n}^{2} \xrightarrow{d}$?

Example

Let $X_{n} \xrightarrow{d} X$ where $X \sim N(0,1)$. Then $X_{n}^{2} \xrightarrow{d}$?

- Use $g(x)=x^{2}$.

Example

Let $X_{n} \xrightarrow{d} X$ where $X \sim N(0,1)$. Then $X_{n}^{2} \xrightarrow{d}$?

- Use $g(x)=x^{2}$.
- Use $X^{2} \sim \chi_{1}^{2}$.

Example

Let $X_{n} \xrightarrow{d} X$ where $X \sim N(0,1)$. Then $X_{n}^{2} \xrightarrow{d}$?

- Use $g(x)=x^{2}$.
- Use $X^{2} \sim \chi_{1}^{2}$.
- So $x_{n}^{2} \xrightarrow{d} \chi_{1}^{2}$

Example-continuity points

Let X_{1}, \ldots, X_{n} be i.i.d. with mean μ and variance σ^{2}. We have $\bar{X}_{n}-\mu \xrightarrow{d} 0$. Consider $g(x)=1_{x>0}$. Then $g\left(\left(\bar{X}_{n}-\mu\right)^{2}\right) \xrightarrow{d}$?

Example-continuity points

Let X_{1}, \ldots, X_{n} be i.i.d. with mean μ and variance σ^{2}. We have $\bar{X}_{n}-\mu \xrightarrow{d} 0$. Consider $g(x)=1_{x>0}$. Then $g\left(\left(\bar{X}_{n}-\mu\right)^{2}\right) \xrightarrow{d}$?

- Using Continuous Mapping Theorem, $\left(\bar{X}_{n}-\mu\right)^{2} \xrightarrow{d} 0$

Example-continuity points

Let X_{1}, \ldots, X_{n} be i.i.d. with mean μ and variance σ^{2}. We have $\bar{X}_{n}-\mu \xrightarrow{d} 0$. Consider $g(x)=1_{x>0}$. Then $g\left(\left(\bar{X}_{n}-\mu\right)^{2}\right) \xrightarrow{d}$?

- Using Continuous Mapping Theorem, $\left(\bar{X}_{n}-\mu\right)^{2} \xrightarrow{d} 0$
- Can we use Continuous Mapping Theorem to claim that

$$
g\left(\bar{X}_{n}-\mu\right)^{2} \xrightarrow{d} 0 ?
$$

Example-continuity points

Let X_{1}, \ldots, X_{n} be i.i.d. with mean μ and variance σ^{2}. We have $\bar{X}_{n}-\mu \xrightarrow{d} 0$. Consider $g(x)=1_{x>0}$. Then $g\left(\left(\bar{X}_{n}-\mu\right)^{2}\right) \xrightarrow{d}$?

- Using Continuous Mapping Theorem, $\left(\bar{X}_{n}-\mu\right)^{2} \xrightarrow{d} 0$
- Can we use Continuous Mapping Theorem to claim that $g\left(\bar{X}_{n}-\mu\right)^{2} \xrightarrow{d} 0$?
- NO. Because, 0 is a random variable whose mass is at 0 , where g is discontinuous.

How about convergence in q.m.?

- If $X_{n} \xrightarrow{q m} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f\left(X_{n}\right) \xrightarrow{q m} f(X)$?

How about convergence in q.m.?

- If $X_{n} \xrightarrow{q m} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f\left(X_{n}\right) \xrightarrow{q m} f(X)$?
- Consider an L - Lipschitz function $f(X) .|f(x)-f(y)| \leq L|x-y|$.

How about convergence in q.m.?

- If $X_{n} \xrightarrow{q m} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f\left(X_{n}\right) \xrightarrow{q m} f(X)$?
- Consider an L- Lipschitz function $f(X)$. $|f(x)-f(y)| \leq L|x-y|$.
- $E\left[\left|f\left(X_{n}\right)-f(X)\right|^{2}\right] \leq L^{2} E\left[\left|X_{n}-X\right|^{2}\right] \rightarrow 0$. So for Lipschitz functions quadratic mean convergence goes through.

How about convergence in q.m.?

- If $X_{n} \xrightarrow{q m} X$, then is it true that for continuous f (discontinuous only at a measure zero set), $f\left(X_{n}\right) \xrightarrow{q m} f(X)$?
- Consider an L- Lipschitz function $f(X) .|f(x)-f(y)| \leq L|x-y|$.
- $E\left[\left|f\left(X_{n}\right)-f(X)\right|^{2}\right] \leq L^{2} E\left[\left|X_{n}-X\right|^{2}\right] \rightarrow 0$. So for Lipschitz functions quadratic mean convergence goes through.
- Can you come up with a non-Lipschitz function and a sequence $\left\{X_{n}\right\}$ where $f\left(X_{n}\right) \stackrel{q m}{\rightarrow} 0$?

Portmanteau Theorem

Theorem
 The following are equivalent.

- $X_{n} \xrightarrow{d} X$
- $E\left[f\left(X_{n}\right)\right] \rightarrow E[f(X)]$ for all continuous f that vanish outside a compact set.
- $E\left[f\left(X_{n}\right)\right] \rightarrow E[f(X)]$ for all bounded and continuous f.
- $E\left[f\left(X_{n}\right)\right] \rightarrow E[f(X)]$ for all bounded measurable functions f s.t. $P(X \in C(f))=1$, where $C(f)=\{x: f$ is continuous at $x\}$ is called the continuity set of f.

Example-bounded

Consider $f(x)=x$ and

$$
X_{n}= \begin{cases}n & \text { w.p. } 1 / n \\ 0 & \text { w.p. } 1-1 / n\end{cases}
$$

Example-bounded

Consider $f(x)=x$ and

$$
X_{n}= \begin{cases}n & \text { w.p. } 1 / n \\ 0 & \text { w.p. } 1-1 / n\end{cases}
$$

- $X_{n} \xrightarrow{d} 0$, but $E\left[X_{n}\right] \rightarrow$?

Example-bounded

Consider $f(x)=x$ and

$$
X_{n}= \begin{cases}n & \text { w.p. } 1 / n \\ 0 & \text { w.p. } 1-1 / n\end{cases}
$$

- $X_{n} \xrightarrow{d} 0$, but $E\left[X_{n}\right] \rightarrow$?
- $E\left[X_{n}\right]=1$. What went wrong?

Example-bounded

Consider $f(x)=x$ and

$$
X_{n}= \begin{cases}n & \text { w.p. } 1 / n \\ 0 & \text { w.p. } 1-1 / n\end{cases}
$$

- $X_{n} \xrightarrow{d} 0$, but $E\left[X_{n}\right] \rightarrow$?
- $E\left[X_{n}\right]=1$. What went wrong?
- $f(x)=x$ is not bounded.

Putting everything together

Theorem

$$
\begin{align*}
& X_{n} \xrightarrow{d} X \text { and } d\left(X_{n}, Y_{n}\right) \xrightarrow{P} 0 \Rightarrow Y_{n} \xrightarrow{d} X \tag{1}\\
& X_{n} \xrightarrow{d} X \text { and } Y_{n} \xrightarrow{d} c \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{d}(X, c) \tag{2}\\
& X_{n} \xrightarrow{P} X \text { and } Y_{n} \xrightarrow{P} Y \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{P}(X, Y) \tag{3}
\end{align*}
$$

Putting everything together

Theorem

$$
\begin{align*}
& X_{n} \xrightarrow{d} X \text { and } d\left(X_{n}, Y_{n}\right) \xrightarrow{P} 0 \Rightarrow Y_{n} \xrightarrow{d} X \tag{1}\\
& X_{n} \xrightarrow{d} X \text { and } Y_{n} \xrightarrow{d} c \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{d}(X, c) \tag{2}\\
& X_{n} \xrightarrow{P} X \text { and } Y_{n} \xrightarrow{P} Y \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{P}(X, Y) \tag{3}
\end{align*}
$$

- Eq 3 does not hold if we replace convergence in probability by convergence in distribution.

Putting everything together

Theorem

$$
\begin{align*}
& X_{n} \xrightarrow{d} X \text { and } d\left(X_{n}, Y_{n}\right) \xrightarrow{P} 0 \Rightarrow Y_{n} \xrightarrow{d} X \tag{1}\\
& X_{n} \xrightarrow{d} X \text { and } Y_{n} \xrightarrow{d} c \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{d}(X, c) \tag{2}\\
& X_{n} \xrightarrow{P} X \text { and } Y_{n} \xrightarrow{P} Y \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{P}(X, Y) \tag{3}
\end{align*}
$$

- Eq 3 does not hold if we replace convergence in probability by convergence in distribution.
- Example: $X_{n} \sim N(0,1), Y_{n}=-X_{n} . X \perp Y$ and X, Y are independent standard normal random variables.

Putting everything together

Theorem

$$
\begin{align*}
& X_{n} \xrightarrow{d} X \text { and } d\left(X_{n}, Y_{n}\right) \xrightarrow{P} 0 \Rightarrow Y_{n} \xrightarrow{d} X \tag{1}\\
& X_{n} \xrightarrow{d} X \text { and } Y_{n} \xrightarrow{d} c \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{d}(X, c) \tag{2}\\
& X_{n} \xrightarrow{P} X \text { and } Y_{n} \xrightarrow{P} Y \Rightarrow\left(X_{n}, Y_{n}\right) \xrightarrow{P}(X, Y) \tag{3}
\end{align*}
$$

- Eq 3 does not hold if we replace convergence in probability by convergence in distribution.
- Example: $X_{n} \sim N(0,1), Y_{n}=-X_{n} . X \perp Y$ and X, Y are independent standard normal random variables.
- Then $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$. But $\left(X_{n}, Y_{n}\right) \xrightarrow{d}(X,-X)$, not $\left(X_{n}, Y_{n}\right) \xrightarrow{d}(X, Y)$.

Putting everything together

Theorem (Slutsky's theorem)
$X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} c$ imply that

$$
\begin{gathered}
X_{n}+Y_{n} \xrightarrow{d} X+c \\
X_{n} Y_{n} \xrightarrow{d} c X \\
X_{n} / Y_{n} \xrightarrow{d} X / c
\end{gathered}
$$

Putting everything together

Theorem (Slutsky's theorem)
$X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} c$ imply that

$$
\begin{gathered}
X_{n}+Y_{n} \xrightarrow{d} X+c \\
X_{n} Y_{n} \xrightarrow{d} c X \\
X_{n} / Y_{n} \xrightarrow{d} X / c
\end{gathered}
$$

- Does $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$ imply $X_{n}+Y_{n} \xrightarrow{d} X+Y$?

Putting everything together

Theorem (Slutsky's theorem)
$X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} c$ imply that

$$
\begin{gathered}
X_{n}+Y_{n} \xrightarrow{d} X+c \\
X_{n} Y_{n} \xrightarrow{d} c X \\
X_{n} / Y_{n} \xrightarrow{d} X / c
\end{gathered}
$$

- Does $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$ imply $X_{n}+Y_{n} \xrightarrow{d} X+Y$?
- Take $Y_{n}=-X_{n}$, and X, Y as independent standard normal random variables. $X_{n} \xrightarrow{d} X$ and $Y_{n} \xrightarrow{d} Y$ but $X_{n}+Y_{n} \xrightarrow{d} 0$.

Using all this

If $X_{1}, \ldots X_{n}$ are i.i.d. random variables with mean μ and variance σ^{2}, prove that $\sqrt{n} \frac{\bar{X}_{n}-\mu}{S_{n}} \xrightarrow{d} N(0,1)$.

Using all this

If $X_{1}, \ldots X_{n}$ are i.i.d. random variables with mean μ and variance σ^{2}, prove that $\sqrt{n} \frac{\bar{X}_{n}-\mu}{S_{n}} \xrightarrow{d} N(0,1)$.

- First note that $S_{n}=\frac{1}{n} \sum_{i} x_{i}^{2}-\bar{X}_{n}^{2}$

Using all this

If $X_{1}, \ldots X_{n}$ are i.i.d. random variables with mean μ and variance σ^{2}, prove that $\sqrt{n} \frac{\bar{X}_{n}-\mu}{S_{n}} \xrightarrow{d} N(0,1)$.

- First note that $S_{n}=\frac{1}{n} \sum_{i} x_{i}^{2}-\bar{X}_{n}^{2}$
- Law of large numbers give $\frac{\sum_{i} x_{i}^{2}}{n} \xrightarrow{P} E\left[X^{2}\right]$ and $X_{n} \xrightarrow{P} \mu$.

Using all this

If $X_{1}, \ldots X_{n}$ are i.i.d. random variables with mean μ and variance σ^{2}, prove that $\sqrt{n} \frac{\bar{X}_{n}-\mu}{S_{n}} \xrightarrow{d} N(0,1)$.

- First note that $S_{n}=\frac{1}{n} \sum_{i} X_{i}^{2}-\bar{X}_{n}^{2}$
- Law of large numbers give $\frac{\sum_{i} X_{i}^{2}}{n} \xrightarrow{P} E\left[X^{2}\right]$ and $X_{n} \xrightarrow{P} \mu$.
- So $\left(\frac{\sum_{i} X_{i}^{2}}{n}, \bar{X}_{n}\right) \xrightarrow{P}\left(E\left[X^{2}\right], \mu\right)$ and now using the continuous mapping theorem, $S_{n}^{2} \xrightarrow{P} \sigma^{2}$.

Using all this

If $X_{1}, \ldots X_{n}$ are i.i.d. random variables with mean μ and variance σ^{2}, prove that $\sqrt{n} \frac{\bar{X}_{n}-\mu}{S_{n}} \xrightarrow{d} N(0,1)$.

- First note that $S_{n}=\frac{1}{n} \sum_{i} X_{i}^{2}-\bar{X}_{n}^{2}$
- Law of large numbers give $\frac{\sum_{i} X_{i}^{2}}{n} \xrightarrow{P} E\left[X^{2}\right]$ and $X_{n} \xrightarrow{P} \mu$.
- So $\left(\frac{\sum_{i} X_{i}^{2}}{n}, \bar{X}_{n}\right) \xrightarrow{P}\left(E\left[X^{2}\right], \mu\right)$ and now using the continuous mapping theorem, $S_{n}^{2} \xrightarrow{P} \sigma^{2}$.
- Finally, $\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$ using CLT.

Using all this

If $X_{1}, \ldots X_{n}$ are i.i.d. random variables with mean μ and variance σ^{2}, prove that $\sqrt{n} \frac{\bar{X}_{n}-\mu}{S_{n}} \xrightarrow{d} N(0,1)$.

- First note that $S_{n}=\frac{1}{n} \sum_{i} X_{i}^{2}-\bar{X}_{n}^{2}$
- Law of large numbers give $\frac{\sum_{i} X_{i}^{2}}{n} \xrightarrow{P} E\left[X^{2}\right]$ and $X_{n} \xrightarrow{P} \mu$.
- So $\left(\frac{\sum_{i} X_{i}^{2}}{n}, \bar{X}_{n}\right) \xrightarrow{P}\left(E\left[X^{2}\right], \mu\right)$ and now using the continuous mapping theorem, $S_{n}^{2} \xrightarrow{P} \sigma^{2}$.
- Finally, $\sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$ using CLT.
- Now using Slutsky's lemma, $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / S_{n} \xrightarrow{d} N(0,1)$ using CLT.

Uniformly tight

Definition

 X is defined to be "tight" if $\forall \epsilon>0 \exists M$ for which,$$
P(\|X\|>M)<\epsilon
$$

$\left\{X_{n}\right\}$ is defined to uniformly tight if $\forall \epsilon>0 \exists M$ for which,

$$
\sup _{n} P\left(\left\|X_{n}\right\|>M\right)<\epsilon
$$

Uniformly tight

- Give an example of a sequence that is Not UT
- $X_{n}=\operatorname{Uniform}([-n, n])$
- $P\left(\left|X_{n}\right|>n(1-\epsilon / 2)\right)=\epsilon$, so you cannot find an ϵ such that $P\left(\left|X_{n}\right|>M\right) \leq \epsilon$ for all n

Prohorov's theorem

Theorem

- $X_{n} \xrightarrow{d} X \Rightarrow\left\{X_{n}\right\}$ is UT.
- $\left\{X_{n}\right\}$ is UT implies that, there exists a subsequence $\left\{n_{j}\right\}$ such that $x_{n_{j}} \xrightarrow{d} x$.

Notation for rates, big 0 and big O-pea

Definition

- Big O. Let $g($.$) be a positive function.$

$$
\begin{aligned}
f(x) & =O(g(x)) \text { as } x \rightarrow \infty \\
\exists M, x_{0}, \quad|f(x)| & \leq M g(x) \quad \text { For } x \geq x_{0}
\end{aligned}
$$

For large $\mathrm{x}, f(x)$ is bounded by $g(x)$ up-to a multiplicative constant

- The big O_{P} :

$$
\begin{aligned}
& X_{n}=O_{P}(1) \Leftrightarrow\left\{X_{n}\right\} \text { is UT } \\
& X_{n}=O_{P}\left(R_{n}\right) \Leftrightarrow X_{n}=Y_{n} R_{n} \text { and } Y_{n}=O_{P}(1)
\end{aligned}
$$

X_{n} is likely to lie within a ball of finite radius

Notation for rates, small o and small o-pea

Definition

- The small o:

$$
f(x)=o(g(x)) \Leftrightarrow f(x) / g(x) \rightarrow 0 \quad \text { as } x \rightarrow \infty
$$

- The small op:

$$
\begin{aligned}
X_{n}=o_{P}(1) & \Leftrightarrow X_{n} \xrightarrow{P} 0 \\
X_{n}=o_{P}\left(R_{n}\right) & \Leftrightarrow X_{n}=Y_{n} R_{n} \text { and } Y_{n}=o_{P}(1)
\end{aligned}
$$

X_{n} is vanishing in probability

How do they interact

Lemma

Let $R: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a function. Let $X_{n}=o_{P}(1)$ be a sequence of random variables defined on the domain of \mathbb{R}.. Then as as $\|h\| \rightarrow 0, \forall q>0$

$$
\begin{aligned}
& R(h)=o\left(\|h\|^{q}\right) \text { implies } R\left(X_{n}\right)=o_{P}\left(\left\|X_{n}\right\|^{q}\right) \\
& R(h)=O\left(\|h\|^{q}\right) \text { implies } R\left(X_{n}\right)=O_{P}\left(\left\|X_{n}\right\|^{q}\right)
\end{aligned}
$$

- Work out the proof at home.
- Hint: apply continuous mapping to $R(h) /\|h\|^{q}$.

How do they interact

$$
\begin{aligned}
o_{P}(1)+o_{P}(1) & =o_{P}(1) \\
o_{P}(1)+o_{P}(1) & =o_{P}(1) \\
o_{P}(1) o_{P}(1) & =o_{P}(1) \\
1+o_{P}(1) & =o_{P}(1) \\
\left(1+o_{P}(1)\right)^{-1} & =1+o_{P}(1)
\end{aligned}
$$

Be careful:

$$
\begin{gathered}
e^{o_{P}^{(1)}} \neq o_{P}(1) \\
O_{P}(1)+O_{P}(1) \text { Can actually be } o_{P}(1) \text { because of cancellation. }
\end{gathered}
$$

