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Manegerial Stuff

e Instructor- Purnamrita Sarkar

e Course material and homeworks will be posted under
https://psarkar.github.io/teaching/sds384.html

e Homeworks are due Biweekly

e Grading - 4-5 homeworks (60% ), class participation (10%) Final
Exam (30% )

e Books

e Asymptotic Statistics, Aad van der Vaart. Cambridge. 1998.
e Martin Wainwright's High dimensional statistics: A non-asymptotic
view point


https://psarkar.github.io/teaching/sds384.html

Why do theory?

e Say you have estimated 0, from data Xj,..., Xn. How do we know
we have a “good” estimation method?

e Does 6, — 67 This brings us to Stochastic Convergence.

e How about the rate of convergence?

e Can we give any guarantees on how quickly our estimate converges?

P(|0, — 6] = large) = small



Your instructor “hopes to cover”:

e Consistency of parameter estimates

e Stochastic Convergence
e Concentration inequalities
e Asymptotic normality of estimators

e Empirical processes, VC classes, covering numbers
e Examples of network clustering with a bit of random matrix theory

e Bootstrap, Nonparametric regression and density estimation



Stochastic Convergence

Assume that X, n > 1 and X are elements of a separable metric space
(S, d).

Definition (Weak Convergence)
A sequence of random variables converge in “law” or in “distribution” to

a random variable X, i.e. Xp 9 X if P(Xn < x) = P(X < x) Vx at which
P(X < x) is continuous.



Stochastic Convergence

Assume that X, n > 1 and X are elements of a separable metric space
(S,d).

Definition (Weak Convergence)

A sequence of random variables converge in “law” or in “distribution” to
a random variable X, i.e. Xp 9 X if P(Xn < x) = P(X < x) Vx at which
P(X < x) is continuous.

Definition ( Convergence in Probability)

A sequence of random variables converge in “probability” to a random
variable X, i.e. Xn E X if ve > 0, P(d(Xn,X) >¢€) — 0.



Stochastic Convergence

Assume that Xp,n > 1 and X are elements of a separable metric space
(S,d).
Definition (Almost Sure Convergence)
A sequence of random variables converges almost surely to a random
variable X, i.e. Xn 2% X if P( lim d(Xn, X) = o) = 1.

n—oo

e If you think about a (scalar) random variable as a function that
maps events to a real number, almost sure convergence means
PlweQ: nll>moo Xn(w) = X(w)) =1

Definition (Convergence in quadratic mean)
A sequence of random variables converges in quadratic mean to a

random variable X, i.e. Xn 2 X if E [d(Xn.,X)2] — 0.



Unwinding a.s. convergence

e Xn 23 X implies P(w € Q- Sim  Xn(w) = X(w)) = 1

e What does convergence mean for a sequence of real numbers?



Unwinding a.s. convergence

a.s. - . .
e Xp = X implies P(w e Q: nlmmxn(w) =X(w))=1
e What does convergence mean for a sequence of real numbers?
® Ve >0, Idn, Vm > n, | Xn(w) — X(w)| < €

e Consider a sequence of events Ai, ..., A,
An = {|Xn(w) — X(w)| < €}



Unwinding a.s. convergence

a.s. - . .
e Xp = X implies P(w e Q: nlmmxn(w) =X(w))=1
e What does convergence mean for a sequence of real numbers?
® Ve >0, Idn, Vm > n, | Xn(w) — X(w)| < €

e Consider a sequence of events Ai, ..., A,
An = {|Xn(w) — X(w)| < €}
e Ve >0, dn, s.t. Vm > n, [ Xs(w) — X(w)| < €, boils down to:

L"JﬂAm

i=1m>n



Unwinding a.s. convergence

a.s. y, : . o - -
e Xp = X implies P(w e Q: nlmmxn(w) =X(w))=1
e What does convergence mean for a sequence of real numbers?
® Ve >0, Idn, Vm > n, | Xn(w) — X(w)| < €
e Consider a sequence of events Ai, ..., A,
An = {|Xn(w) — X(w)| < €}
e Ve >0, dn, s.t. Vm > n, [ Xs(w) — X(w)| < €, boils down to:

L"JﬂAm

i=1m>n

e Another way of saying this is, A, happens finitely often. (f.0.)
o X, 23 X implies Ve > 0, P({|X, — X| > e fo.}) =1



Stochastic Convergence

Theorem

Xn 23X X T X=X B X=X, S x

XnE>C=>XngC



Converses: X, % X £ X, & x

e Convergence in law needs no knowledge of the joint distribution of
Xn and the limiting random variable X.

e Convergence in probability does.

Example
Consider X ~ N(0,1), Xnp = —=X. Xn 9 x. But how about X, & X7



Converses: X, % X £ X, & x

e Convergence in law needs no knowledge of the joint distribution of
Xn and the limiting random variable X.

e Convergence in probability does.

Example
Consider X ~ N(0,1), Xnp = —=X. Xn 9 x. But how about X, & X7

e P(|Xn—X|>¢)=P(2|X| >¢) /A 0Ve>0. So Xn does not converge
in probability to X.



Example
Let Z ~ U(0,1) and for n =25 + m for k > 0,0 < m < 2¥

Xn=1(Z € [m2~ K (m+1)27]), ie. X; =1, Xo = 1(Z € [0,1/2)),
X3 =1(Z € [1/2,1)), X4 = 1(Z € [0,1/4)), X5 = 1(Z € [1/4,1/2)).



Example
Let Z ~ U(0,1) and for n =25 + m for k > 0,0 < m < 2¥

Xn=1(Z € [m2~ K (m+1)27]), ie. X; =1, Xo = 1(Z € [0,1/2)),
X3 =1(Z € [1/2,1)), X4 = 1(Z € [0,1/4)), X5 = 1(Z € [1/4,1/2)).

e For any Z € (0,1), the sequence {Xn(Z)} does not converge. So
Xn 23 0.



Example
Let Z ~ U(0,1) and forn—2k+mfork>0 0<m< 2K

Xn=1(Z € [m2~ 5, (m+1)27H)), i.e. X1_1 Xo = 1(Z € [0,1/2)),
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k = |logn].



Example
Let Z ~ U(0,1) and forn—2k+mfork>0 0<m< 2K

Xn=1(Z € [m2~ 5, (m+1)27H)), i.e. X1_1 Xo = 1(Z € [0,1/2)),
X3 =1(Z € [1/2,1)), X4 = 1(Z € [0,1/4)), X5 = 1(Z € [1/4,1/2)).

e For any Z € (0,1), the sequence {Xn(Z)} does not converge. So
Xn 23 0.

e For any € >0, P({|Xn| > €} i.0.)

e Xp are a sequence of bernoulli's with probabilities pp = 1/2k where
k = |logn].

° SoXngOand Xn B0



Example
Let Z ~ U([0,1]) and Xp =2"1(Z € [0,1/n)). Does X, converge to X =0

in quadratic mean, almost surely or in probability?

10



Example
Let Z ~ U([0,1]) and Xp =2"1(Z € [0,1/n)). Does X, converge to X =0

in quadratic mean, almost surely or in probability?

o P(lim Xp=X)=P(Z>0)=1 SoXp 22X,
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Example
Let Z ~ U([0,1]) and Xp =2"1(Z € [0,1/n)). Does X, converge to X =0

in quadratic mean, almost surely or in probability?
e P(lim Xp=X)=P(Z>0)=1. So Xp 25 X.
n—o00

o E|Xn2 =2%"/n— c0. So Xn B 0
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Example
Let Z ~ U([0,1]) and Xp =2"1(Z € [0,1/n)). Does X, converge to X =0

in quadratic mean, almost surely or in probability?
e P(lim Xp=X)=P(Z>0)=1. So Xp 25 X.
n—o00

o E|Xn2 =2%"/n— c0. So Xn B 0
e P(|Xn|>e)=P(Xn=2")=P(Z€[0,1/n))=1/n—0

10



Borel Cantelli

o Xp 23" X implies Ve > 0, P({|Xn — X| > ¢ i.0.}) =0

11



Borel Cantelli

o Xp 23" X implies Ve > 0, P({|Xn — X| > ¢ i.0.}) =0

Consider a sequence of events Aq, ..., An.

Infinitely often means Vn, 3m > n, s.t. Am occurs.

e More concretely

N U An

n=1m=n

11



Borel Cantelli Lemma (1)

Theorem
If S P(Aj) < o0, then P({An i.0.}) = 0.
i

Example
Let Xn ~ Bernoulli(2™"). Then X, 3 0.

Check if Xp = 1 infinitely often.

12



Borel Cantelli Lemma (1)

Theorem
Ifz P(A;) < oo, then P({An i.0.}) = 0.
i

o0 o0
e Recall that {As i.0.} is equivalent to ﬂ U Am

n=1m=n

Bn

13



Borel Cantelli Lemma (1)

Theorem
Ifz P(A;) < oo, then P({An i.0.}) = 0.
i

[o@) o
e Recall that {As i.0.} is equivalent to ﬂ U Am
n=1m=n
Bn
o oo
e Note that B, 1 C Bn, and so we have By | B := ﬂ U Am, hence
n=1m=n

using monotone convergence we have:

lim_P(Bn) = P(B)

13



Borel Cantelli Lemma (1)

Theorem
If Y P(A7) < oo, then P({An i.0.}) = 0.
i

P(A; i.0.) = lim P(Bp) < lim P(Am) =0

14



Borel Cantelli Lemma (I) application

Theorem
Consider X1, ..., Xn iid mean zero random variables with EX,-4 < 0.

Prove that ZX,-/n % 0.

1

15



Borel Cantelli Lemma (I) application

Theorem
Consider X1, ..., Xn iid mean zero random variables with EX,-4 < 0.

Prove that ZX,-/n % 0.

1

Proof.

n
Let Sn = ZX’
i=1
Let A; = {S; > ne} for some ¢ > 0

Show that Ve > 0, P(An happens i.o.) = 0. O

15



Borel Cantelli Lemma (I1)

Theorem
Ifz P(A;) = oo and {An} are independent then P({An i.0.}) = 1.
i

16



Borel Cantelli Lemma (I1)

e Start with the complement — we will show P((A; i.0.)) = 0.

17



Borel Cantelli Lemma (I1)

e Start with the complement — we will show P((4; i.0.)¢) = 0.

P((A; i.0.) (U N AC>

n m>n

. c
lim P ( N Am)
m>n

i, 11 » (45)

m>n

Jim [T @—PAm))

m>n

IN

lim_exp(— > P(Am)) =0

m>n

17



Continuous Mapping Theorem

Theorem
Let g be continuous on a set C where P(X € C) =1. Then,

18



Let X, % X where X ~ N(0,1). Then X2 %2

10



Let X, % X where X ~ N(0,1). Then X2 %2

e Use g(x) = x2.

10



Let X, % X where X ~ N(0,1). Then X2 %2

o Use g(x) =x2.
o Use X2 Nx%.

10



Let X, % X where X ~ N(0,1). Then X2 %2

o Use g(x) =x2.
o Use X2 Nx%.

° SOX,%gx%

10



Example-continuity points

Let Xi,...,Xn be i.i.d. with mean p and variance o2. We have

Xn — 11 9 0. Consider g(x) = 1y50. Then g((Xn — 1)?) LY

20
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Example-continuity points

Let Xi,...,Xn be i.i.d. with mean p and variance o2. We have

Xn — 11 9 0. Consider g(x) = 1y50. Then g((Xn — 1)?) LY

e Using Continuous Mapping Theorem, (X, — u)z 49

e Can we use Continuous Mapping Theorem to claim that
v d
g(Xn—1)* 5 07

20



Example-continuity points

Let Xi,...,Xn be i.i.d. with mean p and variance o2. We have
Xn — 11 9 0. Consider g(x) = 1y50. Then g((Xn — 1)?) LY
e Using Continuous Mapping Theorem, (X, — u)z 49
e Can we use Continuous Mapping Theorem to claim that
g(Xn —1)? % 07
e NO. Because, 0 is a random variable whose mass is at 0, where g is

discontinuous.

20



How about convergence in q.m.?

e If Xpn a X, then is it true that for continuous f (discontinuous only
at a measure zero set), f(Xn) B f(X)?

21
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o E[|f(Xn) — f(X)[?] < L2E[|Xn — X|?] = 0. So for Lipschitz functions
quadratic mean convergence goes through.
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How about convergence in q.m.?

e If Xpn a X, then is it true that for continuous f (discontinuous only
at a measure zero set), f(Xn) B f(X)?

e Consider an L- Lipschitz function £(X). |f(x) — f(y)| < L|x — y|.
o E[|f(Xn) — f(X)[?] < L2E[|Xn — X|?] = 0. So for Lipschitz functions
quadratic mean convergence goes through.

e Can you come up with a non-Lipschitz function and a sequence
{Xn} where £(Xn) & 0?

21



Portmanteau Theorem

Theorem
The following are equivalent.

o« Xn 3 x

e E[f(Xn)] — E[f(X)] for all continuous f that vanish outside a
compact set.

e E[f(Xn)] — E[f(X)] for all bounded and continuous f.

e E[f(Xn)] — E[f(X)] for all bounded measurable functions f s.t.

P(X € C(f)) =1, where C(f) ={x : f s continuous at x} is called
the continuity set of f.

i)



Example-bounded

Consider f(x) = x and

w.p. 1
X, = n p. 1/n
0 wp.1-1/n

23
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Example-bounded

Consider f(x) = x and

n w.p. 1/n
X, = p. 1/
0 wp.1-1/n

o Xn %0, but E[Xn] —?
e E[Xn] =1. What went wrong?
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Example-bounded

Consider f(x) = x and

w.p. 1
X, = n p. 1/n
0 wp.1-1/n

o Xn %0, but E[Xn] —?
e E[Xn] =1. What went wrong?

e f(x) = x is not bounded.

23



Putting everything together

Theorem

Xn % X and d(Xn, Yn) B 0= va % x (1)
Xn % X and Yn % ¢ = (Xn, Yn) & (X, 0) (2)

Xn B X and Yo B Y = (Xn, va) B (X, ¥) (3)

24
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e Eq 3 does not hold if we replace convergence in probability by
convergence in distribution.
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Putting everything together

Theorem
Xn % X and d(Xn, Yn) 5 0= v, & x (1)
Xn % X and Yn % ¢ = (Xn, Yn) & (X, 0) (2)
Xn B X and Yo B Y = (Xn, va) B (X, ¥) (3)

e Eq 3 does not hold if we replace convergence in probability by
convergence in distribution.

e Example: Xn ~ N(0,1), Yn =—Xn. X L Y and X, Y are independent
standard normal random variables.
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Putting everything together

Theorem
Xn % X and d(Xn, Yn) 5 0= v, & x (1)
Xn % X and Yn % ¢ = (Xn, Yn) & (X, 0) (2)
Xn B X and Yo B Y = (Xn, va) B (X, ¥) (3)

e Eq 3 does not hold if we replace convergence in probability by
convergence in distribution.

e Example: Xn ~ N(0,1), Yn =—Xn. X L Y and X, Y are independent
standard normal random variables.

o Then Xn % X and Yn % ¥. But (Xn, Ya) % (X, —X), not
(Xn, Yn) % (X, V).

24



Putting everything together

Theorem (Slutsky’s theorem)
Xn 94 X and Yn 9, . imply that

Xn+Yn b X+c
XnYngCX

Xn/Yn % X/c

25



Putting everything together

Theorem (Slutsky’s theorem)
Xn 94 X and Yn 9, . imply that

Xn+Yn b X+c
XnYngCX

Xn/Yn % X/c

o Does Xn % X and Yo & Y imply Xn+ Yn & X+ Y?
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Putting everything together

Theorem (Slutsky’s theorem)
Xn 94 X and Yn 9, . imply that
d
Xn —+ Yn = X +c
Xn Yn ﬂ) cX

Xn/Yn % X/c

o Does Xn % X and Yo & Y imply Xn+ Yn & X+ Y?

e Take Yn = —Xn, and X, Y as independent standard normal random
variables. Xp g> X and Yn ﬂ> Y but Xp+ Yn 9 0.

25



Using all this

If X1,...Xn are i.i.d. random variables with mean x and variance o2,

prove that ﬁ% 4 N(0,1).
n
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Using all this
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. 1 2 o2
e First note that Sp = o ZX,' - Xn
1
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If X1,...Xn are i.i.d. random variables with mean x and variance o2,

prove that ﬁ% 4 N(0,1).
n

. 1 2 o2
e First note that Sp = o ZX,' - Xn
1

e Law of large numbers give =—_ k E[X2] and Xp & e

2
2iXi o P
n

, Xn) — (E[Xz],u) and now using the continuous mapping

SixP e
n

e So (

theorem, 5,% i a2
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Using all this

If Xq,...Xn are i.i.d. random variables with mean p and variance o2,

prove that ﬁ% 4 N(0,1).
n

. 1 2 o2
First note that Sp = — ZX; - X;
1

X2
Law of large numbers give Zn k E[X2] and Xp i L.
2
S X?
e So (Z’T’,Xn) £ (E[Xz],u) and now using the continuous mapping

theorem, 5,% i a2

Finally, va(Xn — 1) % N(0,02) using CLT.
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Using all this

If Xq,...Xn are i.i.d. random variables with mean p and variance o2,

prove that ﬁ% < no,1).
n
. 1 _
e First note that S, = . Z_Xi2 - X,%
1

X2
Zn R E[X2] and Xp E L.

Law of large numbers give
. X2

e So (Zlixl %) R
n

, Xn) — (E[Xz],u) and now using the continuous mapping

theorem, 5,% i a2
Finally, va(Xn — 1) % N(0,02) using CLT.

Now using Slutsky's lemma, v/n(Xn — 11)/Sn 9 N(0,1) using CLT.

26



Uniformly tight

Definition
X is defined to be “tight” if Ve > 0 IM for which,

P(IX|| > M) < e
{Xn} is defined to uniformly tight if Ve > 0 3M for which,

sup P(||Xn|| > M) < ¢
n

27



Uniformly tight

e Give an example of a sequence that is Not UT
e Xp = Uniform([—n, n])

e P(|Xn| > n(1 —¢€/2)) = ¢, so you cannot find an ¢ such that
P(|Xn| > M) < ¢ for all n

28



Prohorov’s theorem

Theorem

o Xp % X = {Xp}is UT.

e {Xn} is UT implies that, there exists a subsequence {n;} such that
d

an — X.

20



Notation for rates, big O and big O-pea

Definition

e Big O. Let g(.) be a positive function.

f(x) = O(g(x)) as x — oo
M, xg, [f(x)] < Mg(x) For x > xp

For large x, f(x) is bounded by g(x) up-to a multiplicative constant

e The big Op:

Xn = OP(Rn) = Xn = Yan and Yn = OP(I)

Xn is likely to lie within a ball of finite radius

20



Notation for rates, small o and small o-pea

Definition

e The small o:
f(x) =o(g(x)) & f(x)/g(x) -0 as x — oo
e The small op:

Xn=op(l) & Xn 530
Xn = OP(Rn) <~ Xn = Yan and Yn = OP(].)

Xn is vanishing in probability

21



How do they interact

Lemma
Let R :R¥ - R be a function. Let Xn = op(1) be a sequence of random
variables defined on the domain of R.. Then as as ||h|| — 0, Vg > 0

R(h) = o(||h]|%) implies R(Xn) = op (| Xnll)
R(h) = O(|hl|) implies R(Xn) = Op(][Xn|9)

e Work out the proof at home.

e Hint: apply continuous mapping to R(h)/| h||9.

9



How do they interact

op(1) + 0p(1) = op(1).
op(1) + Op(1) = Op(1).
Op(1)op(1) = op(1).
14 0p(1) = Op(1).
(1+0p(1)) " =1+ 0p(1).

Be careful:

e?P(1) £ op(1)
Op(1) + Op(1) Can actually be op(1) because of cancellation.

23



