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U Statistics

• We will see many interesting examples of U statistics.

• Interesting properties

• Unbiased (done)

• Reduces variance (done)

• Concentration (via McDiarmid) (done)

• Asymptotic variance (done)

• Asymptotic distribution (today)
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Normal Convergence of U statistics-proof

• Trick: find some Û such that Û is asymptotically equivalent to U.

• Make sure Û is easy to analyze.

Theorem

If Xn
d→ X and |Yn − Xn|

P→ 0, then Yn
d→ X .

• In our case we will use Û as a sum of functions of Xi

• Then use CLT on Û

• We will find the functions using Hájek projections.
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Hájek Projections – Setup

• Let {X1, . . . ,Xn} be independent random vectors.

• Consider a linear space S of random variables.

• E.g. S can be the set of all random variables of the form

n∑
i=1

gi (Xi )

• gi are arbitrary measurable functions gi : Rd → R with

E [gi (Xi )
2] < ∞, for i ∈ [n]

• ES2 < ∞,∀S ∈ S

• Consider a random variable T with E [T2] < ∞
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Hájek projections

• Define by the projection Ŝ = arg inf
S∈S

E [(T − S)2]

Theorem

Ŝ is a projection of T onto a linear space S with finite second moments,

iff, Ŝ ∈ S and

E [(T − Ŝ)S ] = 0, For every S ∈ S. Orthogonality

Every two projections of T onto S are equal a.s. If S contains the

constant variables, then E [T ] = E [Ŝ ] and cov(T − Ŝ , S) = 0 for every

S ∈ Ŝ.
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Hájek projections

Proof.

• First note that

E(T − S)2 = E [(T − Ŝ)2] + 2E [(T − Ŝ)(Ŝ − S)] + E [(S − Ŝ)2]

• If the orthogonality condition is satisfied, then the middle term is

zero.

• So E(T − S)2 ≥ E(T − Ŝ)2, and this inequality is strict unless

E(Ŝ − S)2 = 0. This proves uniqueness.

5



Hájek projections-converse

Proof.

• For any number α

E(T − Ŝ − αS)2 = E [(T − Ŝ)2]− 2αE [(T − Ŝ)S ] + α2E [S2]

• If Ŝ is the projection, then ∀α and ∀S ∈ S,

α2E [S2]− 2αE [(T − Ŝ)S ] ≥ 0

• So for α > 0, E [(T − Ŝ)S ] ≤ αE [S2]/2

• for α < 0, E [(T − Ŝ)S ] ≥ −|α|E [S2]/2

• So the orthogonality condition must hold.
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Hájek projections-proof cont.

• If constants are in S, then the orthogonality condition with S = 1

gives E [T ] = E [Ŝ ].

• So, cov(T − Ŝ , S) = E [(T − Ŝ)S ]− E [T − Ŝ ]E [S ] = 0

• The first term is zero using orthogonality.

• The second term is zero because E [T ] = E [Ŝ ].
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Projections and asymptotic equivalence

• By the orthogonality, we have E [T2] = E [(T − Ŝ)2] + E [Ŝ2]

• If S contains constants, then E [T ] = E [Ŝ ]

• So var(T ) = var(T − Ŝ) + var(Ŝ)

• So if S has constants, and var(T ) = var(Ŝ), then Ŝ = T a.s.

• What if the variances are not equal, but almost (or asymptotically)

equal?
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Projections and asymptotic equivalence

Theorem

Consider linear spaces of random variables with finite second moment

Sn that contains constants. Let Tn be random variables with

projections Ŝn onto Sn. If var(Tn)/var(Ŝn) → 1, then,

Tn − E [Tn]

sd(Tn)
− Ŝn − E [Ŝn]

sd(Ŝn)

P→ 0,

where sd(X ) is
√
var(X ).
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Projections and asymptotic equivalence-proof

Proof.

• We will prove convergence in second mean.

• Let Dn =
Tn − E [Tn]

sd(Tn)
− Ŝn − E [Ŝn]

sd(Ŝn)

• E [Dn] = 0

• So the variance calculation gives:

var(Dn) = 2− 2
cov(Tn, Ŝn)

sd(Tn)sd(Ŝn)

= 2− 2
cov(Tn − Ŝn, Ŝn) + var(Ŝn)

sd(Tn)sd(Ŝn)

= 2− 2
var(Ŝn)

sd(Tn)sd(Ŝn)
→ 0
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How to get a Hájek projection

• Let {X1, . . . ,Xn} be independent random vectors.

• Consider a linear space S of random variables.

• E.g. S can be the set of all random variables of the form
n∑

i=1

gi (Xi ).

• gi are arbitrary measurable functions gi : Rd → R with

E [gi (Xi )
2] < ∞, for i ∈ [n]

Theorem

The Hájek projection of an arbitrary random variable T (X1, . . . ,Xn)

with finite second moment onto S is given by

Ŝ =
n∑

i=1

E [T |Xi ]− (n − 1)E [T ].
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How to get a Hájek projection

Proof.

• First note that Ŝ ∈ S

• All that remains is to check the orthogonality condition.

E [(T − Ŝ)S ] = E [(T − Ŝ)
∑
i

gi (Xi )]

=
∑
i

E [(T − Ŝ)gi (Xi )]

=
∑
i

EXi
E [(T − Ŝ)gi (Xi )|Xi ]

=
∑
i

Egi (Xi )E [T − Ŝ |Xi ]

• But E [Ŝ |Xi ] = E [
∑
j

E [T |Xj ]|Xi ]− (n − 1)E [T ] = E [T |Xi ].
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What if Xi ’s are iid?

• If X1, . . . ,Xn are iid,

• So, in this case, as long as T is permutation invariant,
E [T |Xi = x ] = E [T (X1, . . . ,Xi−1, x ,Xi , . . . )]

= E [T (x ,X2, . . . ,Xn)]

• Thus the Hájek projections can be computed by taking a projection

on a smaller set S′ ⊂ S

• S′ contains random variables of the form
n∑

i=1

g(Xi ) where g is some

arbitrary measurable function with E [g(Xi )
2] < ∞
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Normal Convergence of U statistics-proof

• Recall U :=
1(n
r

) ∑
S∈Ir

h(XS )

• Define the Hájek projection as

Û :=
n∑

i=1

E [U − θ|Xi ]

=
1(n
r

) n∑
i=1

∑
S∈Ir

E [h(XS )− θ|Xi ]

• Note that

E [h(XS )− θ|Xi = x ] =

E [h(x ,X2, . . . ,Xr )]− θ =: g(x) When i ∈ S

0 o.w.
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Normal Convergence of U statistics-proof

• Define the Hájek projection as

Û :=
n∑

i=1

E [U − θ|Xi ]

=
1(n
r

) n∑
i=1

∑
S∈Ir

E [h(XS )− θ|Xi ]

=
1(n
r

) n∑
i=1

∑
S∈Ir :Xi∈S

E [h(XS )− θ|Xi ]

=
1(n
r

) n∑
i=1

(
n − 1

r − 1

)
g(Xi )

=
r

n

n∑
i=1

g(Xi )
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Normal Convergence of U statistics-proof

• Ok. So we got a projection. Now we need to move to asymptotics

• So let us calculate the variance of Û

var(Û) =
r2

n
var(g(X1))

=
r2

n
var(E [h(XS )|X1]) =

r2

n
ξ1

• Now CLT gives,
√
n(Û)

d→ N(0, r2ξ1)
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Normal Convergence of U statistics-proof

• We know that
√
nÛ

d→ N(0, r2ξ1)

• We already proved
var(U)

var(Û)
→ 1

• So
√
n(Û − (U − θ))

P→ 0

• So
√
n(U − θ)

d→ N(0, r2ξ1)
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