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Uniform convergence of CDFs

Given Xq,...,Xn "~§I F, where F is the CDF of some unknown density.

A natural estimate of F is given by

. 1
Fn(t) = ; Z ].,oo’t(X,')
i=1

1_co,¢ is the indicator function for {x < t}
Fn(t) is the empirical CDF.
Note that this is unbiased since E[Fn(t)] = F(t)



Law of large numbers

e For any fixed ¢ € R, LLN states that Fn(t) & F(¢)
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Figure 4-1. Plots of population and empirical CDF functions for the uniform distribution on [0, 1].
(a) Empirical CDF based on n = 10 samples. (b) Empirical CDF based on n = 100 samples.

[Taken from Martin Wainwright's book]



Why the empirical CDF?

A statistical functional maps a CDF to a real number.

Say you want to estimate a statistical functional v(F)

A natural estimator uses the “plug in" principle, i.e. v(Fn)

Understanding the properties of the empirical CDF will help us
understand why this plug in estimator is a good estimator.



Examples of functionals-expectation

Example

Given some integrable function g, the expectation functional is given by

w(F) = [ g()dF(x)

Let g(x) :=x
1g(F) = E[X]

n
vg(Fn) = % ZX,-, which is the sample average.
i=1

For general g, vg(Fn) = Zg



Examples of functionals-quantile

Example
Given some « € [0, 1], the quantile functional Q« is given by

Qu(F) :=inf{t € R|F(t) > a}

e The median corresponds to the special case a = 1/2

e The plug in estimator is given by the sample quantile.
Qa(Fn) = inf{t € R|Fn(t) > a}.

e The question is whether the estimate converges in some sense to the
truth.
e Note that the above function is nonlinear and so we cannot use law
of large numbers to show consistency.



How do we measure consistency?

First define |F — G|loo := sup |G(t) — F(t)| to measure the distance
teR

between two CDF's F and G.

Now define continuity of a functional w.r.t this norm.

We will say that ~ is continuous at F in the sup-norm if

Ye>0,36>0, s.t. |G — Flloo <6 = |1(G) — (F)| < e

This essentially means that in order to show consistency of a plug-in
estimator we need to show that ||F, — F|jco converges to zero.



The Glivenko Cantelli theorem

Theorem

For any distribution the empirical CDF Fp is a strongly consistent
estimator of the population CDF F in the uniform norm, i.e.

1Fn — Flloo 23" 0.

e We prove this later.



General function classes

e Consider the function class F of integrable real-valued functions.

1
o Let ||Pn— P|F:= sup |- f(X;) — E[f]|
feF "Z,-: '

Definition
We say that F is a Glivenko-Cantelli class for P if ||Ph — P| £
converges to zero in probability as n — oo.

e Can also be defined in a stronger sense.

e We say that F satisfies the strong Glivenko-Cantelli law if the
above quantity converges to zero a.s.



The classical Glivenko Cantelli theorem

e Consider the function class F of indicator functions of the form
F = {l oo,y ()t € R}.
o Forafixed t € R, E[l_, (X)] = P(X < t) = F(t)
e So the classical GC theorem corresponds to a strong uniform law for

the above class.



Failure of the uniform law

Example

Let S be the class of all subsets of [0,1] such that the subset S has a
finite number of elements. Now consider Fg := {15(.)|S € S}. Let
X; fic P s.t. P is a distribution over [0,1] and P has no atoms, i.e.
P({x}) = 0,Vx € [0,1]. This class is not a GC class for P.
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Failure of the uniform law

Example

Let S be the class of all subsets of [0,1] such that the subset S has a
finite number of elements. Now consider Fg := {15(.)|S € S}. Let
X; fic P s.t. P is a distribution over [0,1] and P has no atoms, i.e.
P({x}) = 0,Vx € [0,1]. This class is not a GC class for P.

First note that P[S] =0,VS € S.
Let X = {Xq,...,Xn}

We see that X € S, and Pp[X] = 1.
sup |Pn[S]—P[S]|=1-0=1

Ses
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Coming back to functionals

e We saw that functionals help us look at quantities like quantiles,
means, etc. But is that all?

e As it turns out they help enormously for empirical risk minimization
too.

e Consider the indexed family of probability distributions
Po = {Pyl0 € ©}
o Let X ={Xq1,...,Xn} lid Py, where 0" € ©
e This 0* could lie in some d dimensional space
e Take for example the problem of estimating the means of a Mixture
of Gaussians.
e This 8" could also be lying in some function class, which will give us

a non-parametric estimation problem.
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Estimating the true 0*

e In these cases, we estimate 6* by minimizing a loss function of the
form Ly(x) which measures how well Py represents or fits the
unknown distributions.

e Empirical risk minimization is based on the objective function, also
known as the empirical risk

Rn(0,0%) Z Lo(X

e The population risk is given by

RO = By [4(X0)

Exi~Pps
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Empirical risk mini

e Sometimes, we minimize empirical risk over some subset ©g € ©, to

get 0
e The statistical question is how small is the excess risk
R(0,0%)— inf R(0,0"
(0.0%) ~ ing R(O.07)

e Now we will look at some examples
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Example: Maximum Likelihood

Example

Consider a family of distributions {Py,6 € ©} , each with a strictly
positive density py. Now suppose that we are given Xi,..., Xn g Pys.
We would like to estimate the unknown parameter 0. In order to do

so, we consider the objective function

Pg* (x)
Pa(x)

Lg(x) := log

e The maximum likelihood estimate is indeed

A 1
0 = arg min = 57" Ly (X)).
arggggn; 6(Xi)

X
e The population risk is R(6,0") = Ep+ log Pe*((X))' which is the KL
Po

divergence between the fitted and true densities.
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Empirical risk minimization

e Qur goal is to understand the behavior of the excess risk.

e Recall that we want to bound R(6, 6*) — (0,60%), aka, 6R(A,6).

inf R
0€0q
e Assume for convenience that the infimum over 6 € © is achieved at
0o € Op.

e SR(0,6%) equals

R(0,6%) — Rn(0,0") + Rn(,0%) — Rn(6g, 0™) + Rn(0g, 0™) — R(6g,6™)
T T><0 T3

(1)

e T3 is just the deviation of a sum of bounded and iid random
variables from its expectation. So this can be easily bounded using
tools like Hoeffding etc.
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Empirical risk minimization

o T3 =23 L£g(X) — ElLgy(X))

e When L is a bounded loss function, we can use techniques we have
learned so far.

1
o Lets look at — Ty = Zﬁé(X,) — E[L5(X))]
1
e This again is much harder to analyze since § is a function of
X1y, Xn.
e Typically we bound this using
T < P S ch(x ) = ELLo(X]| =2 1Pn = Pl £(oy)
9 i
o Where L(©g) is the loss class {£y|0 € ©g}
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Empirical Risk Minimization

1 A
o T3 = Ezﬁeo(Xi) — E[£90(Xi)] < HP” - PHE(@Q)

® 6R(0,67) < 2|IPn — Pllg(ey)
o Now we will establish an uniform law of large numbers for the loss

class £(©g)
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