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Uniform convergence of CDFs

• Given X1, . . . ,Xn
iid∼ F , where F is the CDF of some unknown density.

• A natural estimate of F is given by

F̂n(t) :=
1

n

n∑
i=1

1−∞,t(Xi )

• 1−∞,t is the indicator function for {x ≤ t}

• F̂n(t) is the empirical CDF.

• Note that this is unbiased since E [F̂n(t)] = F (t)
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Law of large numbers

• For any fixed t ∈ R, LLN states that F̂n(t)
P→ F (t)

[Taken from Martin Wainwright’s book]
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Why the empirical CDF?

• A statistical functional maps a CDF to a real number.

• Say you want to estimate a statistical functional γ(F )

• A natural estimator uses the “plug in” principle, i.e. γ(F̂n)

• Understanding the properties of the empirical CDF will help us

understand why this plug in estimator is a good estimator.
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Examples of functionals-expectation

Example

Given some integrable function g , the expectation functional is given by

γg (F ) :=

∫
g(x)dF (x)

• Let g(x) := x

• γg (F ) = E [X ]

• γg (F̂n) =
1

n

n∑
i=1

Xi , which is the sample average.

• For general g , γg (F̂n) =
1

n

n∑
i=1

g(Xi )
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Examples of functionals-quantile

Example

Given some α ∈ [0, 1], the quantile functional Qα is given by

Qα(F ) := inf{t ∈ R|F (t) ≥ α}

• The median corresponds to the special case α = 1/2

• The plug in estimator is given by the sample quantile.

Qα(F̂n) = inf{t ∈ R|F̂n(t) ≥ α}.

• The question is whether the estimate converges in some sense to the

truth.

• Note that the above function is nonlinear and so we cannot use law

of large numbers to show consistency.
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How do we measure consistency?

• First define ∥F − G∥∞ := sup
t∈R

|G(t)− F (t)| to measure the distance

between two CDF’s F and G .

• Now define continuity of a functional w.r.t this norm.

• We will say that γ is continuous at F in the sup-norm if

∀ϵ > 0,∃δ > 0, s.t. ∥G − F∥∞ ≤ δ ⇒ |γ(G)− γ(F )| ≤ ϵ.

• This essentially means that in order to show consistency of a plug-in

estimator we need to show that ∥F̂n − F∥∞ converges to zero.
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The Glivenko Cantelli theorem

Theorem

For any distribution the empirical CDF F̂n is a strongly consistent

estimator of the population CDF F in the uniform norm, i.e.

∥F̂n − F∥∞
a.s.→ 0.

• We prove this later.
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General function classes

• Consider the function class F of integrable real-valued functions.

• Let ∥Pn − P∥F := sup
f ∈F

|1
n

∑
i

f (Xi )− E [f ]|

Definition

We say that F is a Glivenko-Cantelli class for P if ∥Pn − P∥F
converges to zero in probability as n → ∞.

• Can also be defined in a stronger sense.

• We say that F satisfies the strong Glivenko-Cantelli law if the

above quantity converges to zero a.s.
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The classical Glivenko Cantelli theorem

• Consider the function class F of indicator functions of the form

F := {I(−∞,t](.)|t ∈ R}.

• For a fixed t ∈ R, E [I(−∞,t](X )] = P(X ≤ t) = F (t)

• So the classical GC theorem corresponds to a strong uniform law for

the above class.
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Failure of the uniform law

Example

Let S be the class of all subsets of [0, 1] such that the subset S has a

finite number of elements. Now consider FS := {1S (.)|S ∈ S}. Let

Xi
iid∼ P s.t. P is a distribution over [0, 1] and P has no atoms, i.e.

P({x}) = 0,∀x ∈ [0, 1]. This class is not a GC class for P.

• First note that P[S ] = 0,∀S ∈ S.

• Let X = {X1, . . . ,Xn}

• We see that X ∈ S, and Pn[X ] = 1.

• sup
S∈S

|Pn[S ]− P[S ]| = 1− 0 = 1
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Coming back to functionals

• We saw that functionals help us look at quantities like quantiles,

means, etc. But is that all?

• As it turns out they help enormously for empirical risk minimization

too.

• Consider the indexed family of probability distributions

PΘ := {Pθ|θ ∈ Θ}

• Let X = {X1, . . . ,Xn}
iid∼ P∗

θ , where θ∗ ∈ Θ

• This θ∗ could lie in some d dimensional space

• Take for example the problem of estimating the means of a Mixture

of Gaussians.

• This θ∗ could also be lying in some function class, which will give us

a non-parametric estimation problem.
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Estimating the true θ∗

• In these cases, we estimate θ∗ by minimizing a loss function of the

form Lθ(x) which measures how well Pθ represents or fits the

unknown distributions.

• Empirical risk minimization is based on the objective function, also

known as the empirical risk

R̂n(θ, θ
∗) =

1

n

∑
i

Lθ(Xi )

• The population risk is given by

R(θ, θ∗) := Eθ∗︸︷︷︸
EX1∼Pθ∗

[Lθ(X1)]
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Empirical risk minimization

• Sometimes, we minimize empirical risk over some subset Θ0 ∈ Θ, to

get θ̂

• The statistical question is how small is the excess risk

R(θ̂, θ∗)− inf
θ∈Θ0

R(θ, θ∗)

• Now we will look at some examples
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Example: Maximum Likelihood

Example

Consider a family of distributions {Pθ, θ ∈ Θ} , each with a strictly

positive density pθ. Now suppose that we are given X1, . . . ,Xn
iid∼ Pθ∗ .

We would like to estimate the unknown parameter θ∗. In order to do

so, we consider the objective function

.Lθ(x) := log
pθ∗(x)
pθ(x)

• The maximum likelihood estimate is indeed

θ̂ = arg min
θ∈Θ

1

n

∑
i

Lθ(Xi ).

• The population risk is R(θ, θ∗) = Eθ∗ log
pθ∗(X )

pθ(X )
, which is the KL

divergence between the fitted and true densities.
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Empirical risk minimization

• Our goal is to understand the behavior of the excess risk.

• Recall that we want to bound R(θ̂, θ∗)− inf
θ∈Θ0

R(θ, θ∗), aka, δR(θ̂, θ∗).

• Assume for convenience that the infimum over θ ∈ Θ0 is achieved at

θ0 ∈ Θ0.

• δR(θ̂, θ∗) equals

R(θ̂, θ∗)− R̂n(θ̂, θ
∗)︸ ︷︷ ︸

T1

+ R̂n(θ̂, θ
∗)− R̂n(θ0, θ

∗)︸ ︷︷ ︸
T2<0

+ R̂n(θ0, θ
∗)− R(θ0, θ

∗)︸ ︷︷ ︸
T3

(1)

• T3 is just the deviation of a sum of bounded and iid random

variables from its expectation. So this can be easily bounded using

tools like Hoeffding etc.
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Empirical risk minimization

• T3 =
1

n

∑
i

Lθ0
(Xi )− E [Lθ0

(Xi )]

• When L is a bounded loss function, we can use techniques we have

learned so far.

• Lets look at −T1 =
1

n

∑
i

L
θ̂
(Xi )− E [L

θ̂
(Xi )]

• This again is much harder to analyze since θ̂ is a function of

X1, . . . ,Xn.

• Typically we bound this using

T1 ≤ sup
θ∈Θ0

∣∣∣∣∣∣1n
∑
i

Lθ(Xi )− E [Lθ(Xi )]

∣∣∣∣∣∣ =: ∥P̂n − P∥L(Θ0)

• Where L(Θ0) is the loss class {Lθ|θ ∈ Θ0}
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Empirical Risk Minimization

• T3 =
1

n

∑
i

Lθ0
(Xi )− E [Lθ0

(Xi )] ≤ ∥P̂n − P∥L(Θ0)

• δR(θ̂, θ∗) ≤ 2∥P̂n − P∥L(Θ0)

• Now we will establish an uniform law of large numbers for the loss

class L(Θ0)
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