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Proof of the GC theorem

e We will work on a proof that can handle general function classes F
with bounded functions. WLOG let |f(X;)| <1 for f € F.

e Recall that we want to bound ||P, — P|| £
1
(:=sup [~ ) F(X;) — E[f]])
feF ”z,-: :

e The proof has three components:
e Concentration inequality to bound Hlﬁ,, — Pl — E[Hlf’,, — P||#]
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Proof of the GC theorem

e We will work on a proof that can handle general function classes F
with bounded functions. WLOG let |f(X;)| <1 for f € F.

e Recall that we want to bound ||P, — P|| £
1
(:=sup [~ ) F(X;) — E[f]])
feF ”z,-: :

e The proof has three components:
e Concentration inequality to bound ||P, — P||» — E[||P, — P|| 7]
o Symmetrization to relate E[||P, — P|| =] to Rademacher complexity
e Bound this complexity using the effective “size” of the function class.



Concentration

e First note that we cannot apply Hoeffding/Chernoff here.
o Let X :={Xq,...,Xn}

o Let g(X)=|/Pn— P| . Let Y be another sample {Y1,..., Yn},
where Y; = X;,Vi # 1.



Concentration

First note that we cannot apply Hoeffding/Chernoff here.
Let X := {Xq,...,Xn}

Let g(X) = ||Pn — P||£. Let Y be another sample {Y1,..., Yn},
where Y; = X;,Vi # 1.

e Let 1 maximize g(X), and f, maximize g(Y)

() - g(v) = | =) g - | 21200 g

< ’w - Ef1[X1]‘ - ’w - Efl[Xl]‘
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Concentration

e Using McDiarmid's inequality, we get:
P(g(X) — E[g(X)] > ) < exp(~<"n/2)
e So, with probability 1 — exp(—ezn/2),
1Pn = Pl < E[I|Pn— Pl F] + e

e So, we need to bound E[||Pn — P|| 7].



Symmetrization

e Consider an iid copy of X’ of X

E||Pn — P||x = E sup
feF

i

SR - E[f(x,-)n‘

= E sup

fer |5

IS (f(x) - E[f(X,-')])‘

= Ex sup
feF

Exi [1 SO(FOG) — F(X ))] ‘

LST(F () — F(XD))

< EX,X’ sup =
i

feF

B B/
= EX7X/||PH = PnllF
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Symmetrize again

o Let¢ € {1, -1}
e Note that f(X;) — f(X,{) is symmetric

e For a symmetric random variable R, and a random variable
e € {—1,1} (independent of R)

P(eR<t)=P(R<t)P(e=1)+ P(R> —t)P(e = —1)
=P(R<t)

1 / 1 /
e Hence s = f(X;) — f(X:))| and s = (F(X;) — (X
sup i §i (F(X;) — £(X7)) sup 1 §i e (F(X;) = £(X))

have the same distribution, and expectation

e We will choose ¢;'s uniformly, i.e. we will consider Rademacher
random variables.



Rademacher complexity

N 1
E|Pn— Pllz < Ex yr sup |- S (F(X;) — F(X}))
T feF |

— Ex . sup |~ (X)) — F(X])

“feF|n 5
1
< Ex . sup fZef(X)—FEX/ Zef
Tfer|n
=2E sup |- e f(X))| = 2Rxr
feF Z

i

e R is also called the Rademacher complexity of the function class.



Why the Rademacher complexity?

e We have now shown that ||P, — P||z < 2Rz + ¢ with prob.
—n52/2
1—e & /7.

e R measures the maximum possible correlation (over all f € F)
between the vector (f(X1),...,f(Xn)) and the “noise vector"”
(€1,-.-,€n).

e If a function class has some function which has a high correlation
with a random noise vector, then we should not expect

concentration.

e If Rr is o(1) then the Borel Cantelli lemma gives ||Pn — P||z 23 0.



Size of a function class F

o Let F(X) = {(f(X1),...,f(Xn)) : f € F}
X]_, .. .,Xn]

PRETERE

%Ze,f(x,-) =E [E sup \%Ze;f(Xi)\

fer %
e In the next slide we will bound this using the cardinality of F(X)




Size of a function class F

o Let F(X) = {(F(X1),....f(Xn)): f € F}
Xl,...,Xn:|

e In the next slide we will bound this using the cardinality of F(X)

1 1
e Rr=FE sup |- e;f(X;)|=E |E sup |- e f(X;)]
d fe}'”z,-:l ' fe}'”zl '

i

Theorem

7

E sup (e, a) < \/2RZ log |A.

acA

Let ACR", R = max||a
acA

And,

E sup |(e,a)| < \/2R?log|2A].

acA



Proof.

exp | AE sup (e, a) | < Eexp | Asup (e, a)
acA acA
= E sup exp (A{g, a))
acA

S Z Eexp ()\<57 a>)

acA

((e, a) ~ Subgaussian(|a3)) < Z 519 X2|a|3
b 2 < 2

acA

2p2
< |A|exp <A2R>

Take )‘2:2|°g|A|/R2, -




Size of a function class F

e Note that in this case A contains of vectors (f(X1)/n, ..., f(Xn)/n),
where f is a indicator function, i.e. f(X;) =1(X; < t).

e So R =1/n.
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Size of a function class F

e Note that in this case A contains of vectors (f(X1)/n, ..., f(Xn)/n),
where f is a indicator function, i.e. f(X;) =1(X; < t).

e So R =1/n.
e The question is for a given dataset Xi,...Xn, how many distinct

points are there in A?

] = [FOO1 = {FX(ay) - FX(y) : £ € FY)
= ‘{(1(X(1) < t),.“,].(X(n) < t)) te R}‘
<ntl  (HUHN)
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Glivenko Cantelli

Proof.

If F is the set of one sided indicator functions, then

1P — PllF < 2Rz + ¢ = 2E[E[sup 3" i (X;)/nl|X] + ¢
feF

< \/8,‘:\’2 log(n+1)+e¢
< /8log(n+ 1) e
n

By Borel Cantelli, ||Pn — P||x 23 0 O
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