SDS 384 11: Theoretical Statistics
 Lecture 12: Uniform Law of Large Numbers- VC

 dimensionPurnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin

Rademacher Complexity for general function classes

Recall that for $|f(x)| \leq 1$,

$$
\begin{aligned}
\left\|\hat{P}_{n}-P\right\|_{\mathcal{F}} & \leq 2 \mathcal{R}_{\mathcal{F}}+\epsilon=2 E\left[E\left[\sup _{f \in \mathcal{F}} \sum_{i} \epsilon_{i} f\left(X_{i}\right) / n\right] \mid X\right]+\epsilon \\
& \leq 2 E \sqrt{\frac{2 \log \left(\left|\mathcal{F}\left(X_{1}^{n}\right) \cup-\mathcal{F}(X)\right|\right)}{n}}+\epsilon \\
& \leq \sqrt{\frac{8 \log 2 \max _{X}\left|\mathcal{F}\left(X_{1}^{n}\right)\right|}{n}}+\epsilon
\end{aligned}
$$

- How do I control $\left|\mathcal{F}\left(X_{1}^{n}\right)\right|$?
- How big is $\max _{X}\left|\mathcal{F}\left(X_{1}^{n}\right)\right|$?
- Let us focus on binary functions, i.e. $f\left(X_{i}\right) \in\{0,1\}$

Growth function

Definition

For a binary valued function class \mathcal{F}, the growth function is:

$$
\Pi_{\mathcal{F}}(n)=\max \left\{\left|\mathcal{F}\left(x_{1}^{n}\right)\right| x_{1}, \ldots, x_{n} \in \mathcal{X}\right\}
$$

- \mathcal{X} could be \mathbb{R}^{d}.
- $\mathcal{R}_{\mathcal{F}} \leq \sqrt{\frac{2 \log \left(2 \Pi_{\mathcal{F}}(n)\right)}{n}}$
- $\Pi_{\mathcal{F}}(n) \leq 2^{n}$ (which is not really useful)
- We are looking for $\Pi_{\mathcal{F}}(n)$ growing polynomially with n.
- Because then $\left\|\hat{P}_{n}-P\right\|_{\mathcal{F}} \xrightarrow{P} 0$

Vapnik-Chervonenkis Dimension

Definition

A dichotomy of a set S is a partition of S into two disjoint subsets.

Definition (In words)

A set of instances S is shattered by a binary function class \mathcal{F} iff for every dichotomy of S, there is some function in \mathcal{F} consistent with this dichotomy.

Definition (In math)

A binary function class \mathcal{F} shatters $\left(x_{1}, \ldots, x_{d}\right) \subseteq \mathcal{X}$, implies that $\left|\mathcal{F}\left(x_{1}^{d}\right)\right|=2^{d}$.

Vapnik-Chervonenkis Dimension

Definition

The VC dimension of a binary function class \mathcal{F} is given by

$$
\begin{aligned}
d_{V C}(F) & =\max \left\{d: \text { some } x_{1}, \ldots, x_{d} \in \mathcal{X} \text { is shattered by } \mathcal{F}\right\} \\
& =\max \left\{d: \Pi_{\mathcal{F}}(d)=2^{d}\right\}
\end{aligned}
$$

- If the VC dimension of a function class is small, then $\Pi_{\mathcal{F}}(n)$ is small.

Sauer's lemma

Theorem

If $d_{V C}(F) \leq d$, then

$$
\Pi_{F}(n) \leq \sum_{i=0}^{d}\binom{n}{i}
$$

If $n \geq d$, the latter sum is no more than $(e n / d)^{d}$.

- So we have the growth function is either polynomially growing with d, or 2^{n}.

$$
\Pi_{F}(n)= \begin{cases}=2^{n} & \text { If } n \leq d \\ \leq\left(\frac{e n}{d}\right)^{d} & \text { If } n>d\end{cases}
$$

VC dimension-examples

Example

Let $\mathcal{F}=\left\{1_{(-\infty, t]}: t \in \mathbb{R}\right\}$ and $\mathcal{X}=\mathbb{R}$. Then $d_{V C}(\mathcal{F})=1$.

- First show that there exists some configuration of one point, which can be shattered by \mathcal{F}.
- For any point x, if x has label 1 , use $t>x$
- If x has label 0 , use $t<x$.
- Now show that there exists no two points which can be shattered by \mathcal{F}. (this takes a bit of an argument in more complex cases.)
- For any two points (x, y) the labeling $(0,1)$ cannot be achieved by any function in \mathcal{F}.

VC dimension-examples

Example

Let \mathcal{F} be linear classifiers in $\mathcal{X}=\mathbb{R}^{2}$. Then $d_{V C}(\mathcal{F})=3$.

- First show that there exists some configuration of 3 points, which can be shattered by \mathcal{F}.
- Purna draws picture, and if you miss class, you can easily draw a picture to see this.
- Now show that there exists no 4 points which can be shattered by \mathcal{F}. (this takes a bit of an argument.)

VC dimension-examples

Example

Let \mathcal{F} be linear classifiers in $\mathcal{X}=\mathbb{R}^{2}$. Then $d_{V C}(\mathcal{F})=3$.

- Now show that there exists no 4 points which can be shattered by \mathcal{F}. (this takes a bit of an argument.)
- Take 4 non-collinear points. If they are collinear, it is easy to find label configurations which cannot be shattered by a linear classifier.
- The convex hull of these points will either be a triangle, or a quadrilateral.
- In case the convex hull is a triangle, and there is a third point inside the convex hull, give all the points on the hull label 1 and the one inside label 0.
- If three points are collinear or the convex hull is a quadrilateral, then just label the consecutive points with alternative labels.

VC dimension: decision stumps in 2D

Example

Let \mathcal{F} be decision stumps in two dimensions. Then $d_{V C}(\mathcal{F})=3$.

- Show that there exists three points in 2D which can be shattered by this function class. Purna draws picture.
- Now show that no four points in 2D can be shattered.

VC dimension: decision stumps in 2D

Example

Let \mathcal{F} be decision stumps in two dimensions. Then $d_{V C}(\mathcal{F})=3$.

- Case 1: all 4 points are collinear. Easy to see that this cannot be shattered, since $1,0,1,0$ is not achievable.
- Case 2: the convex hull of the 4 points is a triangle.
- Case 2a: the 4th point is on a side of this triangle. So three points are collinear, and a $1,0,1$ labeling cannot be achieved by a decision stump.
- Case 2 b : the 4 th point is inside. Label all the points outside as 1 and the 4th as 0 . This cannot be achieved.
- Case 3: the convex hull is a quadrilateral. Just label $1,0,1,0$ along the hull and this cannot be achieved.

VC dimension: rectangles

Example

Let \mathcal{F} be classifiers which classify the interior (plus boundary) as one of axis aligned rectangles in $\mathcal{X}=\mathbb{R}^{2}$. Then $d_{V C}(\mathcal{F})=4$.

- This is on your homework.

Sauer's lemma proof - using shifting

- For a fixed x_{1}, \ldots, x_{n}, consider the following table.
- Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{5}\right\}$ and let \mathcal{F} have VC dimension d.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
f_{1}	0	1	0	1	1
f_{2}	1	0	0	1	1
f_{3}	1	1	1	0	1
f_{4}	0	1	1	0	0
f_{5}	0	0	0	1	0

- $|\mathcal{F}|$ is the number of distinct rows of the above table.

Sauer's lemma proof [Courtesy: P. Frankl]

- Consider the following shifting operation of the table.
- You start shifting columns from left to right.
- For each column, change a 1 to a zero unless it leads to a row which is already in the table.

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
f_{1}	0	1	0	1	1
f_{2}	1	0	0	1	1
f_{3}	1	1	1	0	1
f_{4}	0	1	1	0	0
f_{5}	0	0	0	1	0

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}
f_{1}	0	1	0	0	0
f_{2}	0	0	0	0	1
f_{3}	0	0	1	0	1
f_{4}	0	0	1	0	0
f_{5}	0	0	0	0	0

Sauer's lemma proof [Courtesy: P. Frankl]

- This operation is done column after column until nothing can be shifted.
- The number of unique rows does not change.
- An all zero column implies that any subset containing that datapoint is not shattered.
- Consider a row with some 1's. Let S be the set of points with the 1's.
- Every configuration with any of these 1's turned into zeros is a row in this table.
- In other words S is shattered by \mathcal{F}.

Sauer's lemma proof [Courtesy: P. Frankl]

- The column shifting never shatters a set that was not shattered already, i.e. a set of points can go from shattered to un-shattered but not the other way around.
- If a column is all zeros after shifting, then any subset containing that datapoint is not shattered.
- Say you have gone through column i. The table (or function class) was F before you started shifting column i and is F^{\prime} after.
- Say subset $A(i \in A)$ is shattered in F^{\prime}. We will show that it was also shattered in F
- Each row with 1 in column i of F^{\prime} is also there in F
- Consider a row with 0 in column i in F^{\prime}.
\rightarrow Since A is shattered by F^{\prime}, the same pattern (constrained to A) with a 1 in column i must also be in F^{\prime}.
\rightarrow And therefore, the same pattern (constrained to A) must be there in F with a 0 in column I (since you could not shift it down.)
- So A must be shattered by F as well.

Sauer's lemma proof [Courtesy: P. Frankl]

- So shifting cannot increase VC dimension.
- Each row has at most d ones.
- The final step is how many rows can the shifted table (and hence the original table) have?
- Well the upper bound is the same as number of length n binary strings you can make with at most d ones.

