

SDS 384 11: Theoretical Statistics Lecture 14: Uniform Law of Large Numbers- Covering number

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

- Recall that a metric space (*T*, *ρ*) consists of a nonempty set *T* and a mapping *ρ* : *T* × *T* → ℝ that satisfies:
 - Non-negative: $\rho(\theta, \theta') \ge 0$ for all (θ, θ') with equality iff $\theta = \theta'$.
 - Symmetric: $\rho(\theta, \theta') = \rho(\theta', \theta)$ for all pairs (θ', θ) , and
 - Triangle ineq holds: $\rho(\theta, \theta') + \rho(\theta', \theta'') \ge \rho(\theta, \theta'')$
- Examples:

•
$$\mathcal{T} = \mathbb{R}^d$$
, $\rho(\theta, \theta') = \|\theta - \theta'\|_2$
• $\mathcal{T} = \{0, 1\}^d$ with $\rho(\theta, \theta') = \frac{1}{d} \sum_i \mathbb{1}(\theta_i \neq \theta'_i)$

Definition

A δ cover of a set \mathcal{T} w.r.t to a metric ρ is a set $\{\theta^1, \ldots, \theta^N\} \subset \mathcal{T}$ such that for every $\theta \in \mathcal{T}$, $\exists i \in [N]$, s.t. $\rho(\theta, \theta^i) \leq \delta$. The δ covering number $N(\delta; \mathcal{T}, \rho)$ is the cardinality of the smallest δ cover.

- We will consider metric spaces which are totally bounded, i.e.
 N(δ; T, ρ) < ∞ for all δ > 0.
- The covering number is non-increasing in δ , i.e. $N(\delta) \ge N(\delta')$ for all $\delta < \delta'$
- We are interested in something called Metric entropy, which is the logarithm of the covering number.

Picture

Figure 1: [courtesy: Martin Wainwright's book]

• A δ covering can be thought of as a union of balls with radius δ .

Example

Consider the interval [-1, 1] with $\rho(\theta, \theta') = |\theta - \theta'|$. We have $N(\delta; [-1, 1], |.|) \leq \frac{1}{\delta} + 1$

- Divide the interval into L sub-intervals centered at $\theta^i := -1 + (2i - 1)\delta$ for $i \in [L]$ and each of length at most 2δ .
- By construction this is a δ covering.
- So $L \leq 1 + 1/\delta$

Example

Consider a *d* dimensional binary hypercube $T = \{0, 1\}^d$ with the Hamming metric defined before.

$$rac{\log \mathsf{N}(\delta;\mathcal{T},
ho)}{\log 2} \leq \lceil \mathsf{d}(1-\delta)
ceil$$

- Let $S = \{1, 2, \dots, \lceil \delta d \rceil\}$
- Consider the set of binary vectors S(δ) := {θ ∈ T : θ_j = 0, j ∈ S(δ)}.
- By construction, for every binary vector $\theta' \in \mathcal{T}$, we can find a vector $\theta \in S(\delta)$ such that $\rho(\theta, \theta') \leq \delta$
- $N(\delta; \mathcal{T}, \rho) \leq |\mathcal{S}(\delta)| = 2^{\lceil d(1-\delta) \rceil}$

- Let $\delta \in (0, 1/2)$
- If {θ¹,...,θ^N} is a δ covering, then the (unrescaled) Hamming balls of radius s = δd around each θ^ℓ must contain all 2^d vectors.
- Let $s = \lfloor \delta d \rfloor$

• For each
$$\theta^i$$
 there are exactly $\sum_{j=0}^{s} \binom{d}{j}$ vectors within δd distance.

• So
$$N \sum_{j=0}^{s} \binom{d}{j} \ge 2^{d}$$

- Let $\delta \in (0, 1/2)$
- So $N \sum_{j=0}^{s} \binom{d}{j} \ge 2^{d}$
- Now take a Binomial (d, 1/2) random variable X.

•
$$P(X \le \delta d) = \sum_{j=0}^{s} {d \choose j} / 2^{d}$$

• So
$$N \ge \frac{1}{P(X \le \delta d)}$$

- Using the Hoeffding bound gives: $N \ge \exp(\frac{d}{2}(1/2 \delta)^2)$
- Using the refined version in your homework gives: $N \ge \exp(d \times KL(\delta||1/2))$

Definition

An δ -packing of \mathcal{T} w.r.t a metric ρ is a set $\{\theta^1, \ldots, \theta^M\} \subset \mathcal{T}$ such that $\rho(\theta^i, \theta^j) > \delta$ for every distinct pair $i, j \in [M]$. The δ packing number $M(\delta; \mathcal{T}, \rho)$ is the cardinality of the largest δ packing.

Picture

Figure 2: [courtesy: Martin Wainwright's book]

• A 2δ packing can be thought of as a union of balls with radius δ such that no two balls touch.

Theorem

For all $\delta > 0$,

$M(2\delta; \mathcal{T}, \rho) \leq N(\delta; \mathcal{T}, \rho) \leq M(\delta; \mathcal{T}, \rho)$

• This is saying that packing and covering numbers exhibit the same scaling behavior as $\delta \rightarrow 0$.

Proof

- Upper bound: Let V = {x₁,..., x_N} be a δ packing of T. So for each y ∈ T \ V, ∃i, ||y x_i|| ≤ δ. Otherwise we could have added this point and increased the packing number. So, V is also a δ cover. But since the covering number is the size of the smallest δ covering, the lower bound holds.
- Lower bound: Say there is a 2δ packing $\{y_1, \ldots, y_M\}$ and a δ covering $\{v_1, \ldots, v_n\}$ with M > n. Now by pigeonhole, there must be two y_i, y_j who both are in the δ ball around some v_k . But using triangle, we will have $|y_i y_j| \le 2\delta$, which is a contradiction. So we must have $m \le n$.

Covering and Packing numbers-example

Theorem

Let ρ be the Euclidean norm on \mathbb{R}^d . Let $B_1(0)$ be the unit ball centered at the origin (WLOG).

$$\frac{1}{\epsilon^d} \le N(\epsilon, B_1, \rho) \le (1 + 2/\epsilon)^d$$

• Consider an
$$\epsilon$$
 cover $\{\theta^1, \ldots, \theta^N\}$. Now,

$$B_{1} \subseteq \bigcup_{i=1}^{N} B_{\epsilon}(\theta^{i})$$
$$\mathsf{vol}(B_{1}) \le N\mathsf{vol}(B_{\epsilon}(\theta^{i})) = N\epsilon^{d}\mathsf{vol}(B_{1})$$
$$N \ge 1/\epsilon^{d}$$

- Consider a ϵ packing $\{\theta^1, \dots, \theta^M\}$
- This is an union of disjoint balls of radius $\epsilon/2$

$$\bigcup_{i} B_{\epsilon/2}(\theta^{i}) \subseteq B_{1+\epsilon/2}$$
$$M \operatorname{vol}(B_{\epsilon/2}(\theta^{i})) \leq (1+\epsilon/2) \operatorname{vol}(B_{1+\epsilon/2})$$
$$M(\epsilon/2)^{d} \operatorname{vol}(B_{1}) \leq (1+\epsilon/2)^{d} \operatorname{vol}(B_{1})$$
$$M \leq (1+2/\epsilon)^{d}$$

Theorem

Consider a d dimensional vector of independent sub $G(\sigma^2)$ random variables. Let B_d be the unit ball in $\|.\|_2$ norm. Then the following holds:

$$E[\sup_{\theta \in B_d} \theta^T X] \le 4\sigma \sqrt{d}$$

Also, for $\delta \in (0,1)$, with probability $1 - \delta$,

$$\sup_{\theta \in B_d} \theta^T X \le 4\sigma \sqrt{d} + \sqrt{2\sigma \log(1/\delta)}.$$

[Recall] Size of a function class \mathcal{F}

• Let
$$\mathcal{F}(X) = \{(f(X_1), \dots, f(X_n)) : f \in \mathcal{F}\}$$

• $\mathcal{R}_{\mathcal{F}} = E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_i f(X_i) \right| = E \left[E \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i} \epsilon_i f(X_i) \right| \left| X_1, \dots, X_n \right] \right]$

• In the next slide we will bound this using the cardinality of $\mathcal{F}(X)$

Theorem

Let
$$A \subseteq \mathbb{R}^{n}$$
, $R = \max_{a \in A} ||a||$,
 $E \sup_{a \in A} \langle \epsilon, a \rangle \leq \sqrt{2R^{2} \log |A|}$.
And,
 $E \sup_{a \in A} |\langle \epsilon, a \rangle| \leq \sqrt{2R^{2} \log |2A|}$.

Proof of first half

- Let $\mathcal{N}_{1/2}$ be a half covering of B_1 . So $N(1/2, B_1, |||_2) \le 5^d$
- So for each $heta\in B_d$, $\exists z_ heta\in \mathcal{N}_{1/2}$ such that

$$\theta = z_{\theta} + x, \qquad \|x\| \le 1/2$$

• So,
$$Y := \sup_{\theta \in B_1} \theta^T X \le \max_{z_{\theta} \in \mathcal{N}_{1/2}} z_{\theta}^T X + \underbrace{\sup_{x \in B_{1/2}} x^T X}_{Y/2}$$

• Thus, we have:

$$EY \leq 2E \left[\max_{z_{\theta} \in \mathcal{N}_{1/2}} z_{\theta}^{\mathsf{T}} X \right] \leq 2\sigma \sqrt{2\log|\mathcal{N}_{1/2}|} \leq \sigma \sqrt{8d\log 5} \leq 4\sigma \sqrt{d}$$

• We used the same result as last time.

$$P(Y \ge t) \le P(\max_{z \in \mathcal{N}_{1/2}} z^T X \ge t/2)$$

$$\le |\mathcal{N}_{1/2}||P(z^T X \ge t/2)$$

$$\le 5^d \exp(-t^2/8\sigma^2 ||z||^2) \le 5^d \exp(-t^2/4\sigma^2) = \delta$$

Solving for t gives, $\sqrt{\log 5 + \log(1/\delta)} = t/2\sigma$. In fact, we can get an upper bound on t as follows.

$$t = 2\sigma\sqrt{d\log 5 + \log(1/\delta)} \le 2\sigma\sqrt{d\log 5} + 2\sigma\sqrt{\log(1/\delta)} =: t_0$$

Thus, $P(Y \ge t_0) \le P(Y \ge t) \le \delta$

• Consider the following function class parametrized by $\theta \in \Theta$.

$$\mathcal{F} := \{ f_{\theta}(.) : \theta \in \Theta \}$$

• Let $\|.\|_{\Theta}$ be the norm for θ and $\|.\|_{\mathcal{F}}$ be the norm for \mathcal{F} .

• Say
$$\|f_{\theta}(.) - f_{\theta'}(.)\|_{\mathcal{F}} \le L \|\theta - \theta'\|_{\Theta}$$

• Then $N(\epsilon; \mathcal{F}, \|.\|_F) \leq N(\epsilon/L; \Theta, \|.\|_{\Theta})$

- A Lipschtiz parametrization allows us to go from cover of the Θ space to cover of the f_θ space with a loss of L.
- If \mathcal{F} is parametrized by a compact set of d parameters then $N(\epsilon, \mathcal{F}) = O(1/\epsilon^d)$

Example

For any fixed θ , define the real-valued function $f_{\theta}(x) := \exp(-\theta x)$, and consider the function class

$$\mathcal{F} = \{ f_{\theta} : [0,1] \rightarrow \mathbb{R} | \theta \in [0,1] \}$$

Using the uniform norm as a metric, i.e.

$$\|f - g\|_{\infty} := \sup_{x \in [0,1]} |f(x) - g(x)|.$$
 Prove that
 $\lfloor \frac{1 - 1/e}{2\delta}
floor + 1 \le N(\delta; \mathcal{F}, \|.\|_{\infty}) \le \frac{1}{2\delta} + 2.$

Proof-upper bound

- First note that $\|f_{\theta} f_{\theta'}\|_{\infty} \le |\theta \theta'|$
- For any $\delta \in (0,1)$, let $T = \lfloor \frac{1}{2\delta} \rfloor$
- Consider $S = \{\theta^0, \dots, \theta^{T+1}\}$ where $\theta^i = 2\delta i$ for $i \leq T$ and $\theta^{T+1} = 1$.

•
$$\{f_{\theta^i}: \theta^i \in S\}$$
 is a δ cover for \mathcal{F} .

- For any $heta \in [0,1]$ we can find $heta^i \in S$ such that $| heta^i heta| \leq \delta$
- Indeed we have,

$$\|f_{\theta^{i}} - f_{\theta}\|_{\infty} = \sup_{x \in [0,1]} |\exp(-\theta^{i}x) - \exp(-\theta x)|$$
$$\leq |\theta^{i} - \theta| \leq \delta$$

So $N(\delta; \mathcal{F}, \|.\|_{\infty}) \leq 2 + T \leq 2 + \frac{1}{2\delta}$

• We will do a δ packing.

• Let
$$\theta' = -\log(1-i\delta)$$
 for $i = 0, \dots, T$

• $-\log(1 - T\delta) = 1$, and so the largest integral value is $T = \lfloor \frac{1 - 1/e}{\delta} \rfloor$

• So
$$M(\delta; \mathcal{F}, \|.\|_{\infty}) \ge 1 + \lfloor \frac{1 - 1/e}{\delta} \rfloor$$

• $N(\delta; \mathcal{F}, \|.\|_{\infty}) \ge M(2\delta; \mathcal{F}, \|.\|_{\infty}) \ge 1 + \lfloor \frac{1 - 1/e}{2\delta} \rfloor$

Figure 3: $\exp(-\theta^{i}x)$ where $\theta^{i} = -\log(1-i\delta)$

Example

 $\mathcal{F}_{L} = \{g: [0,1] \to \mathbb{R} | g(0) = 0, |g(x) - g(y)| \le L | x - x'|, \forall x, x' \in [0,1] \}$

Metric entropy scales as log $N(\delta; \mathcal{F}_L, \|.\|_{\infty}) \simeq L/\delta$ for small enough $\delta > 0$.

Proof

- Its sufficient to consider a sufficiently large packing of \mathcal{F}_L
- For a given ϵ define $M = \lfloor \frac{1}{\epsilon} \rfloor$

• Let
$$x_i = (i-1)\epsilon$$
 for $i = 1, \dots, M+1$

$$\phi(x) := \begin{cases} 0 & x < 0 \\ x & x \in [0, 1] \\ 1 & x > 1 \end{cases}$$
(1)

• Define
$$f_{\beta}(x) = \sum_{i=1} \beta_i L \epsilon \phi\left(\frac{x-x_i}{\epsilon}\right)$$
 for $\beta \in \{-1,1\}^M$

Picture

Figure 5-2. The function class $\{f_{\beta}, \beta \in \{-1, +1\}^M\}$ used to construct a packing of the Lipschitz class \mathscr{F}_L . Each function is piecewise linear over the intervals $[0, \epsilon], [\epsilon, 2\epsilon], \ldots, [(M-1)\epsilon, M\epsilon]$ with slope either +L or -L. There are 2^M functions in total, where $M = \lfloor 1/\epsilon \rfloor$.

- Note that the functions in the packing are all continuous, although they are not differentiable.
- Lipschitz continuous functions are continuous, but they do not have to be necessarily differentiable.
- Lipschitz continuous functions are differentiable almost everywhere.
- Rademacher's theorem basically says that the number of discontinuities of a Lipschitz continuous function are of measure zero.

example

- For any pair $\beta \neq \beta' \in \{-1, 1\}^M$ there is at least one interval where they have the same starting point.
- So $||f_{\beta}(x) f_{\beta}'(x)||_{\infty} \ge 2L\epsilon$
- $f_{\beta} \in \mathcal{F}_L$ for all $\beta \in \{-1, 1\}^M$
- So f_{β} forms a $2L\epsilon$ packing.
- Making $\epsilon L = \delta$ we see

$$N(\delta; \mathcal{F}_L, \|.\|_{\infty}) \geq M(2L\epsilon; \mathcal{F}_L, \|.\|_{\infty}) = 2^{\lfloor \frac{1}{\epsilon} \rfloor} = 2^{\lfloor \frac{L}{\delta} \rfloor}$$

• Also the set f_{β} also form a suitable covering of the original functions, and this gives the upper bound.

• The last example can be extended to Lipschitz functions on the Unit cube in higher dimensions, i.e.

$$|f(x) - f(y)| \le ||x - y||_{\infty}$$
 for all $x, y \in [0, 1]^d$

• The same method can be used to show that the metric entropy for this class is the same order as $(L/\delta)^d$

Make a comparison

- Recall that for a L Lipschitz continuous functions supported on [0,1] with f(0) = 0, the metric entropy was L/δ
- Also recall that for a *L* Lipschitz continuous functions supported on $[0,1]^d$ with f(0) = 0, the metric entropy was $(L/\delta)^d$
- However for a given function class like the last one the metric entropy is $\log(1/\delta)$
- Recall that for Unit hypercubes in *d* dimensions the metric entropy is $d \log(1 + 1/\delta)$
- Note that for Lipschitz continuous functions the dependence on *d* is exponential. This is a much richer class of functions, so the size is considerably larger and scales poorly with *d*.

This lecture was very much based on Martin Wainwright's book.