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e Recall that a metric space (7, p) consists of a nonempty set 7 and a
mapping p: 7 x T — R that satisfies:
o Non-negative: p(6,0') > 0 for all (0,0") with equality iff 0 = ¢’
e Symmetric: p(0,0") = p(0’,0) for all pairs (¢’,6), and
o Triangle ineq holds: p(6,0') + p(0',0") > p(0,0")

e Examples:
o T=R" p0,0)=16—-6]
o 7 =1{0,1}" with p(6,6') = %Z 1(0; # 0))



Covering numbers

Definition

A § cover of a set 7 w.r.t to a metric p is a set {6’17...,6”\/} C T such
that for every 0 € T, 3i € [N], s.t. p(6,0") < 5. The & covering number
N(8; T, p) is the cardinality of the smallest 6 cover.

e We will consider metric spaces which are totally bounded, i.e.
N(8;T,p) < oo for all § > 0.

e The covering number is non-increasing in 4, i.e. N(8) > N(&') for all
§ <o

e \We are interested in something called Metric entropy, which is the

logarithm of the covering number.



N

Figure 1: [courtesy: Martin Wainwright's book]

e A § covering can be thought of as a union of balls with radius §.



Covering number of a unit cube

Example
Consider the interval [—1,1] with p(0,0") = |0 — 6'|. We have
1

e Divide the interval into L sub-intervals centered at
9" ;= —14 (2i —1)§ for i € [L] and each of length at most 26.

e By construction this is a § covering.

e SoL<1+1/§



Covering the binary hypercube

Example
Consider a d dimensional binary hypercube 7 = {0, 1}d with the

Hamming metric defined before.

log N(5; T, p)

ez 2 < [d(1-9)]

o Let S=1{1,2,...,[6d]}
e Consider the set of binary vectors S(0) :={0 € T : 0; =0, € S(9)}.

By construction, for every binary vector ¢’ € T, we can find a vector
0 € S(8) such that p(0,0') <&

N5 T, p) < |S(5)| = 2ld(1=9)]



Lower bound on Covering number of the binary hypercube

Let 6 € (0,1/2)
If {91, . .,0N} is a § covering, then the (unrescaled) Hamming balls

of radius s = 6d around each ¢ must contain all 29 vectors.

Let s = |dd|

S
For each 0" there are exactly » (j’) vectors within §d distance.
Jj=0

S (4 J
So N E 2
j=0



Lower bound on Covering number of the binary hypercube

o Let 6 €(0,1/2)
S d d
e So N >2
% ()2
j=0
e Now take a Binomial (d,1/2) random variable X.
S
d\ d
o P(X <dd) = . 1/2
xsa=3 (4)s

1
> -
.SON_P(X§5d)

e Using the Hoeffding bound gives: N > exp(g(1/2 - 6)2)

e Using the refined version in your homework gives:
N > exp(d x KL(5]]1/2))



Packing numbers

Definition

An J—packing of 7 w.r.t a metric p is a set {61, . .,OM} C T such that
p(0',0’) > 6 for every distinct pair i,j € [M]. The § packing number
M(6; T, p) is the cardinality of the largest § packing.



Figure 2: [courtesy: Martin Wainwright's book]

e A 2§ packing can be thought of as a union of balls with radius ¢
such that no two balls touch.



Relationship between packing and covering numbers

Theorem
For all § > 0,
M(25; T, p) < N(3; T, p) < M(5; T, p)

e This is saying that packing and covering numbers exhibit the same
scaling behavior as § — 0.
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e Upper bound: Let V = {x1,...,xy} be a § packing of 7. So for
each y € T\ V, 3i,|ly — x;|| <§. Otherwise we could have added this
point and increased the packing number. So, V is also a § cover.
But since the covering number is the size of the smallest § covering,
the lower bound holds.

e Lower bound: Say there is a 26 packing {y1,...,yp} and a §
covering {v1,...,vn} with M > n. Now by pigeonhole, there must be
two y;, y; who both are in the ¢ ball around some v;. But using
triangle, we will have |y; — yj| < 26, which is a contradiction. So we

must have m < n.
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Covering and Packing numbers-example

Theorem

Let p be the Euclidean norm on RY. Let B1(0) be the unit ball centered
at the origin (WLOG).
)d

= < N(e,B,p) < (1+2/e
€

e Consider an € cover {61, e ,GN}. Now,
N .
By ¢ U Be(el)

i=1
vol(B1) < Nvol(Be(6')) = Ne9vol(By)
N > l/ed
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Proof-upper bound

e Consider a ¢ packing {01,...761\/’}
e This is an union of disjoint balls of radius €/2

U Bs/2(9I) CBiie

Mvol(B, 5(0")) < (1 + ¢/2)vol(By ;. /o)
M(e/2)%vol(By) < (1 + ¢/2)%vol(By)
M < (1+2/¢)¢
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Suprema over an infinite space

Theorem

Consider a d dimensional vector of independent subG(ch) random

variables. Let B, be the unit ball in ||.|[o norm. Then the following
holds:

E[ sup 07 X] < 40Vd
9€Bd
Also, for § € (0,1), with probability 1 — 4,

sup o7 x < 40Vd + /20 log(1/9).

HEBd
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[Recall] Size of a function class F

o Let F(X) = {(F(X1),....f(Xn)): f € F}

1 1
e Ry =Esup |- e;f(X;)|=E |E sup |- e;f(X;)|
d fe}'”z,-:l ' fe}'”zl '

X]_, ceey Xn
i
e In the next slide we will bound this using the cardinality of F(X)
Theorem

Let ACR", R =max|a
acA

7

E sup (e, a) < \/2RZ log |A.

acA

E sup |(e,a)| < \/2R?log|2A].

acA

And,
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Proof of first half

Let \V /5 be a half covering of By. So N(1/2, B, ||ll2) < 59

So for each 0 € By, 32y € N7, such that

b=zg+x  |xl<1/2
e So,
Y ;= sup GTX§ max zeTX—i— sup xT X
0eBy 2 6/\/1/2 x€By /5
—_———
Y/2

Thus, we have:

EY <2E | max z) X| <20,/2l0g|N} | < 0\/Bdlog5 < 40Vd

ZHEN1/2

We used the same result as last time.
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Proof of part 2

P(Y>t)<P( max z! X>t/2)
ZEN1/2

< Wi allP(zTX > t/2)

< 5% exp(—12/80° | 2|%) < 57 exp(—t? /40?) = &

Solving for t gives, \/log5 + log(1/8) = t/20. In fact, we can get an
upper bound on t as follows.

t =20+/dlogh +log(1/0) < 20+/dlogh + 20+/log(1/0) =: ty

Thus, P(Y > tg) < P(Y >t)<¢
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Example-smoothly parametrized problems

e Consider the following function class parametrized by 6 € ©.

F:={fy(.): 0 € ©}

Let ||.]|@ be the norm for 6 and ||.|| = be the norm for F.

Say [Ifg(.) = fyr (Nl F < L6 —6llo
Then N(e&; 7, [.[lF) < N(e/L;i©, [|.lle)
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Example-smoothly parametrized problems

e A Lipschtiz parametrization allows us to go from cover of the ©
space to cover of the fy space with a loss of L.

e If F is parametrized by a compact set of d parameters then
N(e, F) = 0(1/e%)
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A parametric class of Lipschitz continuous functions

Example

For any fixed 6, define the real-valued function fy(x) := exp(—6x), and
consider the function class

F={fy:[0,1] = RJ§ € [0, 1]}

Using the uniform norm as a metric, i.e.

|f — glloo := sup |f(x)— g(x)|. Prove that
x€[0,1]

1-1/e

1
P81+ 1S NG F o) < 5 +2

26
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Proof-upper bound

e First note that [|fy — fy oo < |0 — ¢
e Foranyd e (0,1), let T = [2—15j
Consider S = {00, . .,9T+1} where 0’ = 28 for i < T and 071 = 1.
{fi : 0" € S} is a & cover for F.

For any 6 € [0,1] we can find 0" € S such that |9i —0]<$¢

Indeed we have,

sup | exp(—Gix) — exp(—06x)|
x€[0,1]

0" — 0] <5

15 — folloo

IN

So N(5; F, | llse) <24 T < 2+2i5
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Proof-lower bound

We will do a ¢ packing.

o Let 0/ = —log(1—is) fori=0,...,T
e —log(1— T4) =1, and so the largest integral value is T = Ll _61/ej
-1
o S0 M(5; 7, oc) > 1+ |21
1 e
o NG 7, loo) > M(25; F, floc) > 1+ | * / ]

i)



Proof-lower bound
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Example-Lipschitz functions on the unit interval

Example

Fi={g:10,1] = R|g(0) = 0, |g(x) — g(y)| < LIx — x'|,¥x,x € [0,1]}

Metric entropy scales as log N(8; F, ||.|loc) =< L/& for small enough ¢ > 0.
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Its sufficient to consider a sufficiently large packing of F;

e For a given ¢ define M = L%J

Let x; =(i—1)efori=1,..., M+1

0 x<0
#(x):=49x xelo,1] (1)
1 x>1

Define f3(x) Zﬁ,Leqﬁ( ) for g€ {-1 1}

25



Picture

+MLe |-

—M Lej-

€ 2 3 M.

Figure 5-2. The function class {fs, 8 € {—1,+1}™} used to construct a packing of the Lipschitz
class #1. Each function is piecewise linear over the intervals [0, €], [, 2¢], ..., [(M — 1)e, M €] with slope
either +L or —L. There are 2 functions in total, where M = |1/e].
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example

e Note that the functions in the packing are all continuous, although
they are not differentiable.

e Lipschitz continuous functions are continuous, but they do not have
to be necessarily differentiable.

e Lipschitz continuous functions are differentiable almost everywhere.

e Rademacher’s theorem basically says that the number of
discontinuities of a Lipschitz continuous function are of measure

Zero.

27



example

e For any pair g # 8 € {-1, l}M there is at least one interval where
they have the same starting point.

® So ||fg(x) — f5(x)lloc > 2Le
o fyeF forall ge{-1,1}M
e So fg forms a 2Le packing.

e Making eL = § we see

1 L
N(S; FL, |-lloo) > M2Le Fy, | ]loc) = 2Le) = 2L5]

e Also the set f3 also form a suitable covering of the original
functions, and this gives the upper bound.
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example

e The last example can be extended to Lipschitz functions on the Unit
cube in higher dimensions, i.e.

F(x) = F()| < Ix—yloo  forall x,y €[0,1]%

e The same method can be used to show that the metric entropy for
this class is the same order as (L/(S)d
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Make a comparison

e Recall that for a L Lipschitz continuous functions supported on [0, 1]
with f(0) = 0, the metric entropy was L/é

e Also recall that for a L Lipschitz continuous functions supported on
[0,1]7 with £(0) = 0, the metric entropy was (L/8)¢

e However for a given function class like the last one the metric
entropy is log(1/6)

e Recall that for Unit hypercubes in d dimensions the metric entropy
is dlog(1+1/5)

e Note that for Lipschitz continuous functions the dependence on d is

exponential. This is a much richer class of functions, so the size is
considerably larger and scales poorly with d.
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