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Definitions

• Recall that a metric space (T , ρ) consists of a nonempty set T and a

mapping ρ : T × T → R that satisfies:

• Non-negative: ρ(θ, θ′) ≥ 0 for all (θ, θ′) with equality iff θ = θ′.

• Symmetric: ρ(θ, θ′) = ρ(θ′, θ) for all pairs (θ′, θ), and

• Triangle ineq holds: ρ(θ, θ′) + ρ(θ′, θ′′) ≥ ρ(θ, θ′′)

• Examples:

• T = Rd , ρ(θ, θ′) = ∥θ − θ′∥2
• T = {0, 1}d with ρ(θ, θ′) =

1

d

∑
i

1(θi ̸= θ′i )
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Covering numbers

Definition

A δ cover of a set T w.r.t to a metric ρ is a set {θ1, . . . , θN} ⊂ T such

that for every θ ∈ T , ∃i ∈ [N], s.t. ρ(θ, θi ) ≤ δ. The δ covering number

N(δ; T , ρ) is the cardinality of the smallest δ cover.

• We will consider metric spaces which are totally bounded, i.e.

N(δ; T , ρ) < ∞ for all δ > 0.

• The covering number is non-increasing in δ, i.e. N(δ) ≥ N(δ′) for all

δ < δ′

• We are interested in something called Metric entropy, which is the

logarithm of the covering number.

2



Picture

Figure 1: [courtesy: Martin Wainwright’s book]

• A δ covering can be thought of as a union of balls with radius δ.
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Covering number of a unit cube

Example

Consider the interval [−1, 1] with ρ(θ, θ′) = |θ − θ′|. We have

N(δ; [−1, 1], |.|) ≤ 1

δ
+ 1

• Divide the interval into L sub-intervals centered at

θi := −1 + (2i − 1)δ for i ∈ [L] and each of length at most 2δ.

• By construction this is a δ covering.

• So L ≤ 1 + 1/δ
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Covering the binary hypercube

Example

Consider a d dimensional binary hypercube T = {0, 1}d with the

Hamming metric defined before.

logN(δ; T , ρ)

log 2
≤ ⌈d(1− δ)⌉

• Let S = {1, 2, . . . , ⌈δd⌉}

• Consider the set of binary vectors S(δ) := {θ ∈ T : θj = 0, j ∈ S(δ)}.

• By construction, for every binary vector θ′ ∈ T , we can find a vector

θ ∈ S(δ) such that ρ(θ, θ′) ≤ δ

• N(δ; T , ρ) ≤ |S(δ)| = 2⌈d(1−δ)⌉
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Lower bound on Covering number of the binary hypercube

• Let δ ∈ (0, 1/2)

• If {θ1, . . . , θN} is a δ covering, then the (unrescaled) Hamming balls

of radius s = δd around each θℓ must contain all 2d vectors.

• Let s = ⌊δd⌋

• For each θi there are exactly
s∑

j=0

(
d

j

)
vectors within δd distance.

• So N
s∑

j=0

(
d

j

)
≥ 2d
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Lower bound on Covering number of the binary hypercube

• Let δ ∈ (0, 1/2)

• So N
s∑

j=0

(
d

j

)
≥ 2d

• Now take a Binomial (d , 1/2) random variable X .

• P(X ≤ δd) =
s∑

j=0

(
d

j

)
/2d

• So N ≥ 1

P(X ≤ δd)

• Using the Hoeffding bound gives: N ≥ exp(
d

2
(1/2− δ)2)

• Using the refined version in your homework gives:

N ≥ exp(d × KL(δ||1/2))
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Packing numbers

Definition

An δ−packing of T w.r.t a metric ρ is a set {θ1, . . . , θM} ⊂ T such that

ρ(θi , θj ) > δ for every distinct pair i , j ∈ [M]. The δ packing number

M(δ; T , ρ) is the cardinality of the largest δ packing.
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Picture

Figure 2: [courtesy: Martin Wainwright’s book]

• A 2δ packing can be thought of as a union of balls with radius δ

such that no two balls touch.
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Relationship between packing and covering numbers

Theorem

For all δ > 0,

M(2δ; T , ρ) ≤ N(δ; T , ρ) ≤ M(δ; T , ρ)

• This is saying that packing and covering numbers exhibit the same

scaling behavior as δ → 0.
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Proof

• Upper bound: Let V = {x1, . . . , xN} be a δ packing of T . So for

each y ∈ T \ V , ∃i , ∥y − xi∥ ≤ δ. Otherwise we could have added this

point and increased the packing number. So, V is also a δ cover.

But since the covering number is the size of the smallest δ covering,

the lower bound holds.

• Lower bound: Say there is a 2δ packing {y1, . . . , yM} and a δ

covering {v1, . . . , vn} with M > n. Now by pigeonhole, there must be

two yi , yj who both are in the δ ball around some vk . But using

triangle, we will have |yi − yj | ≤ 2δ, which is a contradiction. So we

must have m ≤ n.
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Covering and Packing numbers-example

Theorem

Let ρ be the Euclidean norm on Rd . Let B1(0) be the unit ball centered

at the origin (WLOG).

1

ϵd
≤ N(ϵ,B1, ρ) ≤ (1 + 2/ϵ)d

• Consider an ϵ cover {θ1, . . . , θN}. Now,

B1 ⊆
N⋃
i=1

Bϵ(θ
i )

vol(B1) ≤ Nvol(Bϵ(θ
i )) = Nϵdvol(B1)

N ≥ 1/ϵd
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Proof-upper bound

• Consider a ϵ packing {θ1, . . . , θM}

• This is an union of disjoint balls of radius ϵ/2⋃
i

Bϵ/2(θ
i ) ⊆ B1+ϵ/2

Mvol(Bϵ/2(θ
i )) ≤ (1 + ϵ/2)vol(B1+ϵ/2)

M(ϵ/2)dvol(B1) ≤ (1 + ϵ/2)dvol(B1)

M ≤ (1 + 2/ϵ)d

13



Suprema over an infinite space

Theorem

Consider a d dimensional vector of independent subG(σ2) random

variables. Let Bd be the unit ball in ∥.∥2 norm. Then the following

holds:

E [ sup
θ∈Bd

θTX ] ≤ 4σ
√
d

Also, for δ ∈ (0, 1), with probability 1− δ,

sup
θ∈Bd

θTX ≤ 4σ
√
d +

√
2σ log(1/δ).
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[Recall] Size of a function class F

• Let F(X ) = {(f (X1), . . . , f (Xn)) : f ∈ F}

• RF = E sup
f ∈F

∣∣∣∣∣∣1n
∑
i

ϵi f (Xi )

∣∣∣∣∣∣ = E

E sup
f ∈F

|1
n

∑
i

ϵi f (Xi )|

∣∣∣∣∣∣X1, . . . ,Xn


• In the next slide we will bound this using the cardinality of F(X )

Theorem

Let A ⊆ Rn, R = max
a∈A

∥a∥,

E sup
a∈A

⟨ϵ, a⟩ ≤
√

2R2 log |A|.

And,

E sup
a∈A

|⟨ϵ, a⟩| ≤
√

2R2 log |2A|.
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Proof of first half

• Let N1/2 be a half covering of B1. So N(1/2,B1, ∥∥2) ≤ 5d

• So for each θ ∈ Bd , ∃zθ ∈ N1/2 such that

θ = zθ + x , ∥x∥ ≤ 1/2

• So,

Y := sup
θ∈B1

θTX ≤ max
zθ∈N1/2

zTθ X + sup
x∈B1/2

xTX

︸ ︷︷ ︸
Y /2

• Thus, we have:

EY ≤ 2E

 max
zθ∈N1/2

zTθ X

 ≤ 2σ
√

2 log |N1/2| ≤ σ
√

8d log 5 ≤ 4σ
√
d

• We used the same result as last time.
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Proof of part 2

P (Y ≥ t) ≤ P( max
z∈N1/2

zTX ≥ t/2)

≤ |N1/2∥P(z
TX ≥ t/2)

≤ 5d exp(−t2/8σ2∥z∥2) ≤ 5d exp(−t2/4σ2) = δ

Solving for t gives,
√

log 5 + log(1/δ) = t/2σ. In fact, we can get an

upper bound on t as follows.

t = 2σ
√

d log 5 + log(1/δ) ≤ 2σ
√

d log 5 + 2σ
√

log(1/δ) =: t0

Thus, P (Y ≥ t0) ≤ P(Y ≥ t) ≤ δ
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Example-smoothly parametrized problems

• Consider the following function class parametrized by θ ∈ Θ.

F := {fθ(.) : θ ∈ Θ}

• Let ∥.∥Θ be the norm for θ and ∥.∥F be the norm for F .

• Say ∥fθ(.)− fθ′(.)∥F ≤ L∥θ − θ′∥Θ
• Then N(ϵ;F , ∥.∥F ) ≤ N(ϵ/L; Θ, ∥.∥Θ)
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Example-smoothly parametrized problems

• A Lipschtiz parametrization allows us to go from cover of the Θ

space to cover of the fθ space with a loss of L.

• If F is parametrized by a compact set of d parameters then

N(ϵ,F) = O(1/ϵd )
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A parametric class of Lipschitz continuous functions

Example

For any fixed θ, define the real-valued function fθ(x) := exp(−θx), and

consider the function class

F = {fθ : [0, 1] → R|θ ∈ [0, 1]}

Using the uniform norm as a metric, i.e.

∥f − g∥∞ := sup
x∈[0,1]

|f (x)− g(x)|. Prove that

⌊1− 1/e

2δ
⌋+ 1 ≤ N(δ;F , ∥.∥∞) ≤ 1

2δ
+ 2.

20



Proof-upper bound

• First note that ∥fθ − fθ′∥∞ ≤ |θ − θ′|

• For any δ ∈ (0, 1), let T = ⌊ 1

2δ
⌋

• Consider S = {θ0, . . . , θT+1} where θi = 2δi for i ≤ T and θT+1 = 1.

• {f
θi

: θi ∈ S} is a δ cover for F .

• For any θ ∈ [0, 1] we can find θi ∈ S such that |θi − θ| ≤ δ

• Indeed we have,

∥f
θi

− fθ∥∞ = sup
x∈[0,1]

| exp(−θi x)− exp(−θx)|

≤ |θi − θ| ≤ δ

So N(δ;F , ∥.∥∞) ≤ 2 + T ≤ 2 +
1

2δ
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Proof-lower bound

• We will do a δ packing.

• Let θi = − log(1− iδ) for i = 0, . . . ,T

• − log(1− Tδ) = 1, and so the largest integral value is T = ⌊1− 1/e

δ
⌋

• So M(δ;F , ∥.∥∞) ≥ 1 + ⌊1− 1/e

δ
⌋

• N(δ;F , ∥.∥∞) ≥ M(2δ;F , ∥.∥∞) ≥ 1 + ⌊1− 1/e

2δ
⌋

22



Proof-lower bound

Figure 3: exp(−θix) where θi = − log(1− iδ)
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Example-Lipschitz functions on the unit interval

Example

FL = {g : [0, 1] → R|g(0) = 0, |g(x)− g(y)| ≤ L|x − x ′|, ∀x , x ′ ∈ [0, 1]}

Metric entropy scales as logN(δ;FL, ∥.∥∞) ≍ L/δ for small enough δ > 0.
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Proof

• Its sufficient to consider a sufficiently large packing of FL

• For a given ϵ define M = ⌊1
ϵ
⌋

• Let xi = (i − 1)ϵ for i = 1, . . . ,M + 1

•

ϕ(x) :=


0 x < 0

x x ∈ [0, 1]

1 x > 1

(1)

• Define fβ(x) =
∑
i=1

βiLϵϕ

(
x − xi

ϵ

)
for β ∈ {−1, 1}M
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Picture
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example

• Note that the functions in the packing are all continuous, although

they are not differentiable.

• Lipschitz continuous functions are continuous, but they do not have

to be necessarily differentiable.

• Lipschitz continuous functions are differentiable almost everywhere.

• Rademacher’s theorem basically says that the number of

discontinuities of a Lipschitz continuous function are of measure

zero.
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example

• For any pair β ̸= β′ ∈ {−1, 1}M there is at least one interval where

they have the same starting point.

• So ∥fβ(x)− f ′β(x)∥∞ ≥ 2Lϵ

• fβ ∈ FL for all β ∈ {−1, 1}M

• So fβ forms a 2Lϵ packing.

• Making ϵL = δ we see

N(δ;FL, ∥.∥∞) ≥ M(2Lϵ;FL, ∥.∥∞) = 2⌊
1
ϵ ⌋ = 2

⌊L
δ
⌋

• Also the set fβ also form a suitable covering of the original

functions, and this gives the upper bound.
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example

• The last example can be extended to Lipschitz functions on the Unit

cube in higher dimensions, i.e.

|f (x)− f (y)| ≤ ∥x − y∥∞ for all x , y ∈ [0, 1]d

• The same method can be used to show that the metric entropy for

this class is the same order as (L/δ)d
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Make a comparison

• Recall that for a L Lipschitz continuous functions supported on [0, 1]

with f (0) = 0, the metric entropy was L/δ

• Also recall that for a L Lipschitz continuous functions supported on

[0, 1]d with f (0) = 0, the metric entropy was (L/δ)d

• However for a given function class like the last one the metric

entropy is log(1/δ)

• Recall that for Unit hypercubes in d dimensions the metric entropy

is d log(1 + 1/δ)

• Note that for Lipschitz continuous functions the dependence on d is

exponential. This is a much richer class of functions, so the size is

considerably larger and scales poorly with d .
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