

SDS 384 11: Theoretical Statistics

Lecture 15: Uniform Law of Large Numbers-

Applications

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

Application-Random matrix singular value

Theorem

Consider a random matrix $M = (\xi_{ij})_{i,j \in [n]}$ where ξ_{ij} are standard normal random variables.

$$P(\|M\|_{op} \ge A\sqrt{n}) \le C \exp(-cAn)$$

where c, C are absolute constants and $A \ge C$.

 This works for symmetric wigner ensembles and hermitian matrices as well.

Operator norm

- Let $S_n := \{x \in \mathbb{R}^n : ||x||_2 = 1\}$
- $\bullet \ \|M\|_{op} := \sup_{x \in S_n} \|Mx\|$
- First note that we have

$$P(\|Mx\| \ge A\sqrt{n}) \le C \exp(-cAn)$$

• This is because for each row M_i^T , we have

$$M_i^T x \sim Subgaussian(1), (M_i^T x)^2 - 1 \sim Subexponential(2, 4)$$

• $\|Mx\|^2 - n \sim Subexponential(2\sqrt{n}, 4)$

Recall sub-exponential random variables?

Theorem

Let X be a sub-exponential random variable with parameters (ν, b) . Then,

$$P(X \ge \mu + t) \le \begin{cases} e^{-\frac{t^2}{2\nu^2}} & \text{if } 0 \le t \le \frac{\nu^2}{b} \\ e^{-\frac{t}{2b}} & \text{if } t \ge \frac{\nu^2}{b} \end{cases}$$

• $P(\|Mx\|^2 - n \ge Cn) \le e^{-Cn/8}, C > 1.$

Can I just use an Union bound?

- Not really.
- But I can form a 1/2 cover of S_n .
- Find $C = \{x^1, \dots, x^N\}$ such that for all $x \in S_n$, $\exists x^i \in S$ $||x x^i|| \le 1/2$.
- Consider $y \in S$ such that $||My|| = ||M||_{op}$. Let x^i be a member of the 1/2 cover s.t. $||y x^i|| \le 1/2$
- So $||M(y x^i)|| \le ||M||_{op}/2$ and $||M(y x^i)|| \ge ||My|| ||Mx^i|| \ge ||M||_{op} ||Mx^i||$.
- Hence $||Mx^{i}|| \ge ||M||_{op}/2$

Using the covering number

$$\begin{split} P(\|M\|_{op} & \geq \sqrt{(C+1)n}) \leq P(\exists x^i \in \mathcal{C}, \|Mx^i\| \geq \sqrt{(C+1)n}/2) \\ & \leq |\mathcal{C}|P(\|Mx^i\| \geq \sqrt{(C+1)n}/4) \\ & \leq |\mathcal{C}|P(\|Mx^i\|^2 - n \geq (C-3)n/4) \\ C & > 7 \text{ gives } (C-3)n/4 \geq \nu^2/b \qquad \leq |\mathcal{C}| \exp(-(C-3)n/32) \end{split}$$

• ϵ covering number of the unit ball in n dimensions is bounded by $(1+2/\epsilon)^n$

$$P(\|M\|_{op} \ge \sqrt{(C+1)n}) \le 5^n \exp(-(C-3)n/32)$$

 $\le \exp(-n((C-3)/32-1.6))$

• So C will have to be something like 55!!