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Rademacher complexity of function classes

Example

Suppose F is a class parametric functions F := {f (θ, .) : θ ∈ B2}, where
B2 is the unit L2 ball in Rd . Assume that F is closed under negation. f

is L Lipschitz w.r.t. the Euclidean distance on Θ, i.e.

|f (θ, .)− f (θ′, .)| ≤ L∥θ − θ′∥2.

Rn(F) = O

(
L

√
d log(Ln)

n

)

• How do we do this?

• Using covering numbers. But we need to define a bunch of stuff first.
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A Stochastic Process

• Consider a set T ⊆ Rd .

• The family of random variables {Xθ : θ ∈ T } define a Stochastic

process indexed by T .

• We are often interested in the behavior of this process given its

dependence on the structure of the set T .

• In the other direction, we want to know the structure of T given the

behavior of this process.
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Gaussian and Rademacher processes

Definition

A canonical Gaussian process is indexed by T is defined as:

Gθ := ⟨z , θ⟩ =
∑
k

zkθk ,

where zk
iid∼ N(0, 1). The supremum G(T ) := Ez [ sup

θ∈T
Gθ] is the Gaussian

complexity of T .
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Rademacher complexity

• Replacing the iid standard normal variables by iid Rademacher

random variables gives a Rademacher process {Rθ, θ ∈ T }, where

Rθ := ⟨ϵ, θ⟩ =
∑
k

ϵkθk , where ϵk
iid∼ Uniform{−1, 1}

• R(T ) := Eϵ[ sup
θ∈T

Rθ] is called the Rademacher complexity of T .
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How does this relate to the former notions of Rademacher com-

plexity?

• Recall that

RF := E [ sup
f ∈F

|
∑
i

ϵi f (Xi )|] = E [E [ sup
f ∈F

|
∑
i

ϵi f (Xi )||X1, . . . ,Xn]]

• Now the inner expectation can be upper bounded by

Eϵ sup
θ∈T

⋃
−T

∑
i

ϵiθi , where T ⊆ Rn can be written as

T = {(f (X1), . . . , f (Xn))|f ∈ F}
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Relationship

Theorem

For T ∈ Rd ,

R(T ) ≤
√

π

2
G(T ) ≤ c

√
log dR(T )

• This is showing that there can be there are some sets where the

Gaussian complexity can be substantially larger than the

Rademacher complexity.

• We will in fact give an example.
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Proof (of first inequality)

G(T ) = E sup
θ∈T

∑
i

ziθi

= E sup
θ∈T

∑
i

ϵi |zi |θi

= EϵEz sup
θ∈T

∑
i

ϵi |zi |θi

≥ Eϵ sup
θ∈T

∑
i

ϵiE |zi |θi

=

√
2

π
R(T )
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Proof (of second inequality)

Theorem (Ledoux-Talagrand contraction (simple form))

Consider n 1-Lipschitz functions ϕi .

E sup
θ∈T

∑
i

ϵiϕi (θi ) ≤ E sup
θ∈T

∑
i

ϵiθi
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Proof (of second inequality)

Proof.

G(T ) = E sup
θ∈T

∑
i

ziθi = E sup
θ∈T

∥z∥∞
∑
i

zi
∥z∥∞

θi

= EzEϵ

 sup
θ∈T

∥z∥∞
∑
i

ϵi
|zi |

∥z∥∞
θi |z1, . . . , zn


= Ez

∥z∥∞Eϵ

 sup
θ∈T

∑
i

ϵi
|zi |

∥z∥∞
θi |z1, . . . , zn


≤ Ez sup

θ∈T
∥z∥∞Eϵ

∑
i

ϵiθi

Last step follows from the contraction argument.

9



Proof of Ledoux-Talagrand contraction

Proof.

E sup
θ∈T

∑
i

ϵiϕi (θi )︸ ︷︷ ︸
hn(θ)

= Eϵ sup
θ

n−1∑
i=1

ϵiϕi (θi ) + ϵnϕn(θn)



= E
ϵn−1
1

Eϵn sup
θ
(hn−1(θ) + ϵnϕn(θn))

= E
ϵn−1
1

(
1

2
sup
θ
(hn−1(θ) + ϕn(θn)) +

1

2
sup
θ
(hn−1(θ)− ϕn(θn))

)

= E
ϵn−1
1

(
1

2
(hn−1(θ

∗) + ϕn(θ
∗
n)) +

1

2
(hn−1(θ̃)− ϕn(θ̃n))

)
= E

ϵn−1
1

(
1

2
(hn−1(θ

∗) + hn−1(θ̃)) + ϕn(θ
∗
n)− ϕn(θ̃n)

)
≤ E

ϵn−1
1

(
1

2
(hn−1(θ

∗) + hn−1(θ̃)) + s(θ∗n − θ̃n)

)

Here s = sign(θ∗ − θ̃).
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Proof of Ledoux-Talagrand contraction

Proof.

E sup
θ∈T

∑
i

ϵiϕi (θi )︸ ︷︷ ︸
hn(θ)

= Eϵ sup
θ

n−1∑
i=1

ϵiϕi (θi ) + ϵnϕn(θn)



≤ E
ϵn−1
1

(
1

2
(hn−1(θ

∗) + hn−1(θ̃)) + s(θ∗n − θ̃n)

)
= E

ϵn−1
1

(
1

2
(hn−1(θ

∗) + sθ∗n) +
1

2
(hn−1(θ̃)− s θ̃n)

)

≤ E
ϵn−1
1

(
1

2
sup
θ
(hn−1(θ) + sθn) +

1

2
sup
θ
(hn−1(θ)− sθn)

)

≤ E
ϵn−1
1

Eϵn

(
sup
θ
(hn−1(θ) + ϵnθn)

)
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Example

Example

Consider the L1 ball in Rd denoted by Bd
1 .

R(Bd
1 ) = 1,G(Bd

1 ) ≤
√

2 log d

• R(Bd
1 ) = E [ sup

∥θ∥1≤1

∑
i

θi ϵi ] = E [∥ϵ∥∞] = 1

• Similarly, G(Bd
1 ) = E [∥z∥∞]
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Recall the finite class lemma?

Theorem

Consider z with independent standard normal components.

E max
a∈A

< z , a >≤ max
a∈A

∥a∥
√

2 log |A|

• In our case, A = {ei , i ∈ [d ]}, ei (j) = ±1(j = i), |A| = 2d and

max
a∈A

∥a∥ = 1.

• This gives a weaker bound on the Gaussian complexity.
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A sub-gaussian process

Definition

A stochastic process θ → Xθ with indexing set T is sub-Gaussian w.r.t a

metric dX if ∀θ, θ′ ∈ T and λ ∈ R,

E exp(λ(Xθ − X ′
θ)) ≤ exp

(
λ2dX (θ, θ′)2

2

)

• This immediately implies the following tail bound.

P(|Xθ − Xθ′ | ≥ t) ≤ 2 exp

(
− t2

2dX (θ, θ′)2

)
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Upper bound by 1 step discretization

Theorem

(1-step discretization bound). Let {Xθ, θ ∈ T } be a zero-mean sub-

Gaussian process with respect to the metric dX . Then for any δ > 0 ,

we have

E

[
sup

θ,θ′∈T
(Xθ − Xθ′)

]
≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)

+ 2D
√

logN(δ; T , dX ),

where D := max
θ,θ′∈Θ

dX (θ, θ′).

• The mean zero condition gives us:

E [ sup
θ∈T

Xθ] = E [ sup
θ∈T

(Xθ − Xθ0
)] ≤ E [ sup

θ,θ′∈T
(Xθ − Xθ′)]
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Tradeoff

E

[
sup

θ,θ′∈T
(Xθ − Xθ′)

]
≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)


︸ ︷︷ ︸

Approximation error

+4
√

D2 logN(δ; T , dX )︸ ︷︷ ︸
Estimation error

• As δ → 0, the cover becomes more refined, and so the approximation

error decays to zero.

• But the estimation error grows.

• In practice the δ can be chosen to achieve the optimal trade-off

between two terms.
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Proof

• Choose a δ cover T .

• For θ, θ′ ∈ T , let θ1, θ2 ∈ T such that dX (θ, θ1) ≤ δ and

dX (θ′, θ2) ≤ δ.

Xθ − Xθ′ = (Xθ − X
θ1

) + (X
θ1

− X
θ2

) + (X
θ2

− Xθ′)

≤ 2 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′) + sup
θi ,θj∈T

(X
θi

− X
θj
)

• But note that X
θ1

− X
θ2

∼ Subgaussian(dX (θ1, θ2))..
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Finite class lemma for subgaussian processes

Theorem

Consider Xθ sub-gaussian w.r.t d on T and A is a set of pairs from T .

E max
(θ,θ′)∈A

(Xθ − Xθ′) ≤ D
√

2 log |A|,

where D := max
(θ,θ′)∈A

dX (θ, θ′).
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Finite class lemma

exp

(
λE max

(θ,θ′)∈A
(Xθ − Xθ′)

)
≤ E exp

(
λ max
(θ,θ′)∈A

(Xθ − Xθ′)

)
= max

(θ,θ′)∈A
E exp(λ(Xθ − Xθ′))

≤
∑

(θ,θ′)∈A
exp

(
λ2dX (θ, θ′)2

2

)

≤ |A| exp

(
λ2D2

2

)

• Now optimize over λ.
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Finishing the proof

Xθ − Xθ′ ≤ 2 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′) + sup
θi ,θj∈T

(X
θ1

− X
θ2

)

E

[
sup

θ,θ′∈T
(Xθ − Xθ′)

]
≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)

+ E

 sup
θi ,θj∈T

(X
θ1

− X
θ2

)



≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)

+ D
√

2 logN(δ; T , dX )2
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Revisiting: smoothly parametrized class

Example

Suppose F is a class parametric functions F := {f (θ, .) : θ ∈ B2}, where
B2 is the unit L2 ball in Rd . Assume that F is closed under negation. f

is L Lipschitz w.r.t. the Euclidean distance on Θ, i.e.

|f (θ, .)− f (θ′, .)| ≤ L∥θ − θ′∥2.

Rn(F) = O

(
L

√
d log(Ln)

n

)
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Proof

• Denote f (θ,Xn
1 ) as the vector (f (θ,X1), . . . , f (θ,Xn)).

• Recall that nRn(F) = E

[
sup
f ∈F

⟨ϵ, f (θ,Xn
1 )⟩

]
= E

[
sup
θ∈Θ

⟨ϵ, f (θ,Xn
1 )⟩

]
• The process f (θ,Xn

1 ) → ⟨ϵ, f (θ,Xn
1 )⟩ =: Yθ is mean zero subgaussian.

• Note that Yθ − Y ′
θ ∼ Subgaussian(dX (θ, θ′))

• We have:

dX (θ, θ′)2 = ∥f (θ,Xn
1 )− f (θ′,Xn

1 )∥
2 ≤ nL2∥θ − θ′∥22

• So it is L
√
n Lipschitz.
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Proof

• Also,

nRn(F) = E [ sup
θ∈Θ

(Yθ − Yθ′)] ≤ E [ sup
θ,θ′∈Θ

(Yθ − Yθ′)]

•

nRn(F) ≤ 2E sup
dX (θ,θ′)≤δ

θ,θ′∈Θ

(Yθ − Y ′
θ)

︸ ︷︷ ︸
A

+2D
√

logN(δ;F(Θ,Xn
1 ), dX )

• A ≤ δE

 sup
∥v∥2=1

⟨ϵ, v⟩

 ≤ δ
√
n

• D = sup
θ,θ′

dX (θ, θ′) = 2L
√
n
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Proof

• N(δ;F , dX ) ≤ N(δ/L
√
n,Θ, ∥.∥2) ≤

(
1 +

L
√
n

δ

)d
• Finally,

Rn(F) ≤ 4δ√
n
+ 4L

√
d log(1 + L

√
n/δ)

n

• Setting δ = 1 gives:

Rn(F) ≤ 4L√
n
+ 4L

√
d log(1 + L

√
n)

n
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Examples:Nonparametric functions

Example

Suppose F is a class of L Lipschitz functions which are supported on

[0, 1] and f (0) = 0. Note that F is closed under negation. f is L

Lipschitz i.e. |f (x)− f (x ′)| ≤ L|x − x ′| ∀x , x ′ ∈ [0, 1].

Rn(F) = O

(
L

n

)1/3
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Examples:Nonparametric functions

• Consider the process f (Xn
1 ) → ⟨ϵ, f (Xn

1 )⟩ = Yf

• Yf − Yf ′ ∼ subGaussian(∥f (Xn
1 )− f ′(Xn

1 )∥2)
• So dY (f , f ′) = ∥f (Xn

1 )− f ′(Xn
1 )∥2 ≤

√
n∥f − f ′∥∞

• The diameter is D = sup
f ,f ′∈F(Xn

1 )
dX (f , f ′) ≤ 2L

√
n

• So, N(δ,F(Xn
1 ), ∥.∥2) ≤ N(δ/

√
n,F , ∥.∥∞)

nRn(F) ≤ E [ sup
f ∈F(Xn

1 )
Yf ] ≤ E [ sup

f ,f ′∈F(Xn
1 )

(Yf − Yf ′)]

≤ 2E

 sup
dY (f ,f ′)≤δ

(Yf − Yf ′)

+ 2D
√

logN(δ,F , ∥.∥2)

≤ 2E

 sup
dY (f ,f ′)≤δ

(Yf − Yf ′)

+ 2D
√

logN(δ/
√
n,F , ∥.∥∞)

≤ 2δ
√
n + 4L

√
n(L

√
n)/δ

≤ 2δ
√
n + 4L3/2

√
n3/2/δ

• Set δ3/2 = CL3/2n1/4, i.e. δ = C ′Ln1/6 to get Rn = O(n−1/3)
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