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A sub-gaussian process

Definition
A stochastic process § — Xy with indexing set T is sub-Gaussian w.r.t a
metric dy if V0,60’ € T and X € R,

2 /\2
E exp(A(Xg — Xé)) < exp (W)

e This immediately implies the following tail bound.

2

t
P(IXy — Xo| > 1) <2 L
o =Xyl 2 ) < exp( 2dx(é’,6”)2>



Upper bound by 1 step discretization

Theorem

(1-step discretization bound). Let {Xy,0 € T} be a zero-mean sub-

Gaussian process with respect to the metric dy. Then for any 6 >0 ,
we have

E |: sup (Xg _XQI)
0,0/cT

<2E sup  (Xp — Xgr)| +2D4/log N(6; T, dx),
0,0'eT

dx (6,6')<6

where D := max dx(0,0").
0,0'c®

e The mean zero condition gives us:

E[sup Xp] = E[sup (Xg — Xy, )] < E[ sup (X — Xp/)]
0eT 0eT 0.0/'eT



Finite class lemma for subgaussian processes

Theorem
Consider Xy sub-gaussian w.r.t d on T and A is a set of pairs from T.

E max (Xp— Xy) < Dy/2loglA,
A

(0,0"e

where D := max dx(6,6).
o x(0,0°)

)



Dudley’s chaining

Theorem

Let Xy be zero mean sub-Gaussian process w.r.t. a metric dy on T.

We have: 5
E sup Xy < K/ y/log N(6; T, dx )do,
0T 0

where D := sup dx(v,7').
€T



e From before: E sup Xg = E sup (Xp — Xy)
0T 0,0'cT

e Recall that we first choose a § cover T and two points 01, 02 from T
which are § close to 6 and ¢'.

Xog — Xgr :(X97X01)+(X 1—X 2)+(X02 7X9/)

0 0
<2 sup (Xg—Xp)+ sup (X, — X))
0,0'eT 0l oieT
dx (0,0')<s

e For the expectation of the last part we used the finite class lemma.

e Now we will take a series of finer covers of smaller diameters.



e For each integer m=1,...L,
o lete, =D2""
e Form the minimal €, cover T,, of T.
e Since T C T, Np:=|Tm| < N(em; T, dx)
e When L =log,(D/6), we have T, = T
o Let
mm(0) = arg Jnin dx (0, B)

o 7m(0) is the best approximation of 6 from T,
e Also, dx(v,mm(7)) <27"D wheny € T



Picture (Courtesy: MW'’s book chapter 5)




For a member 6’ of T, obtain two sequences {'yo, . ,'yL} where

vt =6"and 4™t = 11 (m).

Similarly form {io, o ,iL} for ¢/ € T.
L
Note that X@ — X’YO = ;-(X’yi — X’Yi_l)
=

L L
Xoi = Xyj = Zl(x,yi = Xi-1)— Z(X:yi — Xsi-1)
=

" F L,?’aexT Xoi = el




o Recall dx(v,mi_1(7)) < 2=(=1D. Now the finite class lemma gives:

_ —(i=1) —i
E |:Vn;a_l>_(i | Xy Xﬂ—i—l('Y)|:| <2 D\/2 log N(2='D, T, dx)

< 42*("“)0\/2 log (2D, T, dx)

27D
<4 / \/2log N(u; T, dx )du

2—(i+1)p

\/ZIOgN(u;T,dX)

J2logN(Q2™'D;T.d,)

D/2i+1 D/2i D/2i-1 9



Esup Xg =E sup (Xg— Xy)
0T 0,0/cT

<2E

sup
0,0'eT
Ldx (0,0')<6

(X9 - Xgl)

sup
0,0'eT
Ldx (6,6")<5

(Xg — Xq1)

sup
0.60'cT
_dX (H’GI)S(S

(Xg — Xq1)

Taking 6 = 0 gives the desired bound.

+E .Su.p (Xei—Xej)
0.6JeT
L

+2 E | max | Xy — X _.
i—1 [76Ti| ! ﬂ'_l(q/)@

D
+8/ \/2log N(u; T, dyx)du
5/2
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Example

Suppose F is a class parametric functions F := {f(0,.) : 6 € By}, where
By is the unit Ly ball in RY. Assume that F is closed under negation. f
is L Lipschitz w.r.t. the Euclidean distance on ©, i.e.

1F(6,.) = (¢, ) < L6 — ¢l

-0 (1)

e We computed this just using the discretization bound.

e It was O(L+/dlog(nL)/n)

e Using chaining takes the logarithmic term away.
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Denote f(6, X{') as the vector (f(0,X7), ..., (0, Xn)).

e Recall that nRn(F) = E | sup (¢, f(6, X)) | = E | sup (e, (6, X{))
feF 0e©
e The process f(0,X{') — (¢, f(0, X{")) =: Yy is mean zero subgaussian.

e Note that Yy — Yé ~ Subgaussian(dx (0,0"))
We have:

dx (0,0') = ||F(0,X{") — £(6', X)|| < V/nL||6 — 0’|

e So it is Ly/n Lipschitz.
e D=2L\/n
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o N(5.7(9,X{), dx) < N(5/(Lv/n). ©,|.2) < (1 +2L/n/5)"

D
Ra(F) < & /0 \/10g N(3/(Lv/7), ©, |.I)d6

K D
< ;/0 \/dlog(1 + 2Ly/n/6)ds

K D
A

”/0 Vdlog(l+ D/§)ds
< KivD‘H/D 51245
< - 0

of

13



Example- VC class

Example

For a function class F of {0,1} valued functions with VC dimension d,
d
-

e First derive with the finite class lemma.

e Then try chaining.
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Example - VC class with finite class lemma

e The finite class lemma says

R < SUPFEF [1£(X{)]l21/2log | F]|
f

- n

_ 2log(ne/d)d
A
- \/2d log(ne/d)
=T/

—O( dlog,(1n/d)>
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Example - VC class with chaining

e To use chaining we first need the covering number in terms of the

VC dimension.
n

. . 1
e First define the ||f — g||%2(,;_n) = z;(f(X,-) — g(X))?
1=
e Haussler et al show that (You did something similar in your
homework)

d
. &)
N5 y(ony) < 1 (3)

e Note that the map < ¢, f(X{') > /v/n is subGaussian w.r.t. the
dy = Lo(Fn) norm.
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Example VC class with chaining

e Using chaining we get:

7/ \/IOgN<5’}—’”'”L2(F‘n))d5
< \/—3, / \/Iog(cld) + dlog(cp/62)ds
<3 / (m +\/dlog(ea/52)) d

e We have again lost the log(n/d) term.
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Why use chaining?

Recall the Glivenko Cantelli lemma?

[ ]
A 2
e We have ||Fn — Flloo < 2R + ¢ with probability at least 1 — e 0°/2
e For the function class F := {1(—o0, t] : t € R}, we used the finite
class lemma in lecture 12 to show that, R = O < |°g,$n)>

e But, now we can use chaining to show that, in fact,
X . . —ns2
[|[Fn — Flloo < % + 0 with probability at least 1 — e n9%/2 for some
n

constant c. This bound is un-improvable in terms of the rate.
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When does the entropy integral exist?

e Suppose T has diameter D w.r.t dx, and log N(§; T, d) = O((Td).
Then

D D
/ Jlog N(8; T, dx )d6 < c/ 5=/245
0 0
pl-d/2
-0 <l—d/2>

e The integral only exists when d = 1.

10



Acknowledgement

e The slides were primarily made using Martin Wainwright's book and
Peter Bartlett's lectures.

20



