
SDS 384 11: Theoretical Statistics

Lecture 17: Uniform Law of Large Numbers- Chaining

Purnamrita Sarkar

Department of Statistics and Data Science

The University of Texas at Austin



A sub-gaussian process

Definition

A stochastic process θ → Xθ with indexing set T is sub-Gaussian w.r.t a

metric dX if ∀θ, θ′ ∈ T and λ ∈ R,

E exp(λ(Xθ − X ′
θ)) ≤ exp

(
λ2dX (θ, θ′)2

2

)

• This immediately implies the following tail bound.

P(|Xθ − Xθ′ | ≥ t) ≤ 2 exp

(
− t2

2dX (θ, θ′)2

)
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Upper bound by 1 step discretization

Theorem

(1-step discretization bound). Let {Xθ, θ ∈ T } be a zero-mean sub-

Gaussian process with respect to the metric dX . Then for any δ > 0 ,

we have

E

[
sup

θ,θ′∈T
(Xθ − Xθ′)

]
≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)

+ 2D
√

logN(δ; T , dX ),

where D := max
θ,θ′∈Θ

dX (θ, θ′).

• The mean zero condition gives us:

E [ sup
θ∈T

Xθ] = E [ sup
θ∈T

(Xθ − Xθ0
)] ≤ E [ sup

θ,θ′∈T
(Xθ − Xθ′)]
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Finite class lemma for subgaussian processes

Theorem

Consider Xθ sub-gaussian w.r.t d on T and A is a set of pairs from T .

E max
(θ,θ′)∈A

(Xθ − Xθ′) ≤ D
√

2 log |A|,

where D := max
(θ,θ′)∈A

dX (θ, θ′).
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Dudley’s chaining

Theorem

Let Xθ be zero mean sub-Gaussian process w.r.t. a metric dX on T .

We have:

E sup
θ∈T

Xθ ≤ K

∫ D

0

√
logN(δ; T , dX )dδ,

where D := sup
γ,γ′∈T

dX (γ, γ′).

4



Proof

• From before: E sup
θ∈T

Xθ = E sup
θ,θ′∈T

(Xθ − Xθ′)

• Recall that we first choose a δ cover T and two points θ1, θ2 from T

which are δ close to θ and θ′.

Xθ − Xθ′ = (Xθ − X
θ1

) + (X
θ1

− X
θ2

) + (X
θ2

− Xθ′)

≤ 2 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′) + sup
θi ,θj∈T

(X
θi

− X
θj
)

• For the expectation of the last part we used the finite class lemma.

• Now we will take a series of finer covers of smaller diameters.
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Cont.

• For each integer m = 1, . . . L,

• Let ϵm = D2−m

• Form the minimal ϵm cover Tm of T .

• Since T ⊆ T , Nm := |Tm| ≤ N(ϵm; T , dX )

• When L = log2(D/δ), we have TL = T

• Let

πm(θ) := arg min
β∈Tm

dX (θ, β)

• πm(θ) is the best approximation of θ from Tm

• Also, dX (γ, πm(γ)) ≤ 2−mD when γ ∈ T
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Picture (Courtesy: MW’s book chapter 5)
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Proof

• For a member θi of T , obtain two sequences {γ0, . . . , γL} where

γL = θi and γm−1 := πm−1(γm).

• Similarly form {γ̃0, . . . , γ̃L} for θj ∈ T .

• Note that Xθ − X
γ0

=
L∑

i=1

(X
γi

− X
γi−1)

X
θi

− X
θj

=
L∑

i=1

(X
γi

− X
γi−1)−

L∑
i=1

(X
γ̃i

− X
γ̃i−1)

• E

[
max

θ,θ′∈T
X
θi

− X
θj

]
≤ 2

L∑
i=1

E

[
max
γ∈Ti

∣∣∣Xγ − Xπi−1(γ)

∣∣∣]
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Proof Cont.

• Recall dX (γ, πi−1(γ)) ≤ 2−(i−1)D. Now the finite class lemma gives:

E

[
max
γ∈Ti

|Xγ − Xπi−1(γ)
|

]
≤ 2−(i−1)D

√
2 logN(2−iD, T , dX )

≤ 42−(i+1)D

√
2 logN(2−iD, T , dX )

≤ 4

2−i D∫
2−(i+1)D

√
2 logN(u; T , dX )du
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Done.

E sup
θ∈T

Xθ = E sup
θ,θ′∈T

(Xθ − Xθ′)

≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)

+ E

 sup
θi ,θj∈T

(X
θi

− X
θj
)



≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)

+ 2
L∑

i=1

E

[
max
γ∈Ti

|Xγ − Xπi−1(γ)
|

]

≤ 2E

 sup
θ,θ′∈T

dX (θ,θ′)≤δ

(Xθ − Xθ′)

+ 8

∫ D

δ/2

√
2 logN(u;T , dX )du

Taking δ = 0 gives the desired bound.
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Example

Example

Suppose F is a class parametric functions F := {f (θ, .) : θ ∈ B2}, where
B2 is the unit L2 ball in Rd . Assume that F is closed under negation. f

is L Lipschitz w.r.t. the Euclidean distance on Θ, i.e.

|f (θ, .)− f (θ′, .)| ≤ L∥θ − θ′∥2.

Rn(F) = O

(
L

√
d

n

)

• We computed this just using the discretization bound.

• It was O(L
√

d log(nL)/n)

• Using chaining takes the logarithmic term away.
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Proof

• Denote f (θ,Xn
1 ) as the vector (f (θ,X1), . . . , f (θ,Xn)).

• Recall that nRn(F) = E

[
sup
f ∈F

⟨ϵ, f (θ,Xn
1 )⟩

]
= E

[
sup
θ∈Θ

⟨ϵ, f (θ,Xn
1 )⟩

]
• The process f (θ,Xn

1 ) → ⟨ϵ, f (θ,Xn
1 )⟩ =: Yθ is mean zero subgaussian.

• Note that Yθ − Y ′
θ ∼ Subgaussian(dX (θ, θ′))

• We have:

dX (θ, θ′) = ∥f (θ,Xn
1 )− f (θ′,Xn

1 )∥ ≤
√
nL∥θ − θ′∥2

• So it is L
√
n Lipschitz.

• D = 2L
√
n
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Example

• N(δ, f (Θ,Xn
1 ), dX ) ≤ N(δ/(L

√
n),Θ, ∥.∥2) ≤ (1 + 2L

√
n/δ)d

Rn(F) ≤ K

n

∫ D

0

√
logN(δ/(L

√
n),Θ, ∥.∥2)dδ

≤ K

n

∫ D

0

√
d log(1 + 2L

√
n/δ)dδ

=
K

n

∫ D

0

√
d log(1 + D/δ)dδ

≤ K
√
D
√
d

n

∫ D

0
δ−1/2dδ

= O

(
L

√
d

n

)
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Example- VC class

Example

For a function class F of {0, 1} valued functions with VC dimension d ,

RF = O

(√
d

n

)

• First derive with the finite class lemma.

• Then try chaining.
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Example - VC class with finite class lemma

• The finite class lemma says

RF ≤
supf ∈F ∥f (Xn

1 )∥2
√

2 log |F|
n

≤

√
2 log(ne/d)d

√
n

≤
√

2d log(ne/d)√
n

= O

(√
d log(n/d)

n

)
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Example - VC class with chaining

• To use chaining we first need the covering number in terms of the

VC dimension.

• First define the ∥f − g∥2
L2(F̂n)

=
1

n

n∑
i=1

(f (Xi )− g(Xi ))
2

• Haussler et al show that (You did something similar in your

homework)

N(δ;F , ∥.∥L2(Pn)) ≤ c1d

(
c2
δ2

)d
• Note that the map < ϵ, f (Xn

1 ) > /
√
n is subGaussian w.r.t. the

dX = L2(F̂n) norm.
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Example VC class with chaining

• Using chaining we get:

RF ≤ K√
n

∫ 1

0

√
logN

(
δ,F , ∥.∥

L2(F̂n)

)
dδ

≤ c3√
n

∫ 1

0

√
log(c1d) + d log(c2/δ

2)dδ

≤ c3√
n

∫ 1

0

(√
log(c1d) +

√
d log(c2/δ

2)

)
dδ

= O

(√
d

n

)

• We have again lost the log(n/d) term.
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Why use chaining?

• Recall the Glivenko Cantelli lemma?

• We have ∥F̂n − F∥∞ ≤ 2RF + δ with probability at least 1− e−nδ2/2

• For the function class F := {1(−∞, t] : t ∈ R}, we used the finite

class lemma in lecture 12 to show that, RF = O

(√
log(n)

n

)
.

• But, now we can use chaining to show that, in fact,

∥F̂n − F∥∞ ≤ c√
n
+ δ with probability at least 1− e−nδ2/2 for some

constant c. This bound is un-improvable in terms of the rate.
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When does the entropy integral exist?

• Suppose T has diameter D w.r.t dX , and logN(δ; T , d) = O(δ−d ).

Then ∫ D

0

√
logN(δ; T , dX )dδ ≤ C

∫ D

0
δ−d/2dδ

= O

(
D1−d/2

1− d/2

)

• The integral only exists when d = 1.
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