Convergence of expectations: exchanging limit and integral

Theorem (Monotone convergence theorem)
If $0 \leq X_1 \leq X_2 \leq \cdots \leq X_n \uparrow X$, then

$$E[X_n] \rightarrow E[X]$$

Lemma (Fatou’s lemma)
If $X_n \geq Y \ \forall n$ for some random variable Y with $E|Y| < \infty$ then

$$\lim_{n \rightarrow \infty} \inf E[X_n] \geq E[\lim \inf_n X_n]$$

Theorem (Dominated convergence theorem)
If $X_n \stackrel{a.s.}{\rightarrow} X$ and $|X_n| \leq Y$ with $E[|Y|] < \infty$, then

$$E[X_n] \rightarrow E[X]$$
Consider n i.i.d. random variables $X_i \sim F$.

Definition (Empirical distribution function)
The empirical distribution function is defined as:

$$F_n(x) = \frac{1}{n} \sum_{i} 1(X_i \leq x).$$

Theorem (Glivenko-Cantelli)
The random variable $\sup_x |F_n(x) - F(x)|$ almost surely converges to zero.

$$P \left(\lim_{n} \sup_x |F_n(x) - F(x)| \to 0 \right) = 1$$
Let X_1, \ldots, X_n be i.i.d random variables with $E[|X_1|] \leq \infty$, mean μ.

Theorem (Weak law of large numbers)

$$\bar{X}_n \xrightarrow{P} \mu$$

Theorem (Strong law of large numbers)

$$\bar{X}_n \xrightarrow{a.s.} \mu$$

Theorem (Central limit theorem)

If $E[X_i^2] = \sigma^2$, $\sqrt{n}(\bar{X}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$.
Let X_1, \ldots, X_n be i.i.d random variables with $E[|X_1|] \leq \infty$, mean μ.

Theorem (Berry Esseen)

If $E[X_i^2] = \sigma^2$, and $E[|X_i|^3] = \rho < \infty$,

$$
\left| P \left(\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \leq x \right) - \Phi(x) \right| \leq \frac{C\rho}{\sigma^3 \sqrt{n}} \quad \forall x, \text{ and } n,
$$

where $\Phi(x)$ is the CDF of the standard normal and c is an universal constant known to be greater than 0.4097 and less that 0.7975.
Theorem
For each n let $(X_{ni})_{i=1}^n$ be independent random variables with mean zero and variance σ_{ni}^2. Let $Z_n = \sum_{i=1}^n X_{ni}$ and $B_n^2 = \text{var}(Z_n)$. Then $Z_n/B_n \xrightarrow{d} N(0,1)$, as long as the Lindeberg condition holds.
The Lindeberg condition

Definition (Lindeberg condition)
For every $\epsilon > 0$,

$$\frac{1}{B_n^2} \sum_{j=1}^{n} E[X_{nj}^2 \cdot 1(|X_{nj}| \geq \epsilon B_n)] \to 0 \text{ as } n \to \infty$$ \hspace{1cm} (1)

Converse: If $\frac{\sigma^2_{nj}}{B_n^2} \to 0$ as $n \to \infty$, i.e. no one variance plays a significant role in the limit, and if $Z_n/B_n \overset{d}{\to} N(0,1)$, then the Lindeberg condition holds.

Necessary and Sufficient: If $\frac{\sigma^2_{nj}}{B_n^2} \to 0$, the the Lindeberg condition is necessary and sufficient to show the CLT.
Example

Let X_1, \ldots, X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_n \xrightarrow{d} N(0,1)$?
Let X_1, \ldots, X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_n \overset{d}{\rightarrow} N(0,1)$?

\[
X_{nj} = \begin{cases}
2j & \text{w.p. } \frac{1}{8j^2} \\
0 & \text{w.p. } 1 - \frac{1}{4j^2} \\
-2j & \text{w.p. } \frac{1}{8j^2}
\end{cases}
\]
Example

Let X_1, \ldots, X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n \xrightarrow{d} N(0, 1)$?

- $X_{nj} = \begin{cases}
2j & \text{w.p. } \frac{1}{8j^2} \\
0 & \text{w.p. } 1 - \frac{1}{4j^2} \\
-2j & \text{w.p. } \frac{1}{8j^2}
\end{cases}$

- $E[X_{nj}] = 0$ and $\text{var}(X_{nj}) = 1$. $B_n^2 = n$.

• \(E[X_{nj}] = 0 \) and $\text{var}(X_{nj}) = 1$. $B_n^2 = n$.

• Let's check the Lindeberg condition with $\epsilon = 1/n$.

\[
\frac{1}{n} \sum_{j} E\left[X_{nj}^2 1(\left| X_{nj} \right| \geq \sqrt{n}) \right] = \frac{1}{n} \sum_{j} 2j^2 \times 4j^2 1(2j \geq \sqrt{n}) \frac{1}{8j^2} = \frac{1}{n} \sum_{j : j \geq \sqrt{n}/2} 1 \xrightarrow{1} 1
\]

• Since $\sigma_{nj}^2 / B_n^2 = 1/n \to 0$, this implies that the CLT does not hold for the sum.
Example

Let X_1, \ldots, X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_n \xrightarrow{d} N(0, 1)$?

- $X_{nj} = \begin{cases}
2j & \text{w.p. } \frac{1}{8j^2} \\
0 & \text{w.p. } 1 - \frac{1}{4j^2} \\
-2j & \text{w.p. } \frac{1}{8j^2}
\end{cases}$

- $E[X_{nj}] = 0$ and $\text{var}(X_{nj}) = 1$. $B_n^2 = n$.
- Let's check the Lindeberg condition with $\epsilon = 1$.

$$
\frac{1}{n} \sum_j E[X_{nj}^2 1(|X_{nj}| \geq \sqrt{n})] = \frac{1}{n} \sum_j 2 \times 4j^2 1(2j \geq \sqrt{n}) \frac{1}{8j^2} = \frac{1}{n} \sum_{j \geq \sqrt{n}/2} 1 \to 1
$$
Example

Let X_1, \ldots, X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n \xrightarrow{d} N(0,1)$?

- $X_{nj} = \begin{cases}
 2j & \text{w.p. } \frac{1}{8j^2} \\
 0 & \text{w.p. } 1 - \frac{1}{4j^2} \\
 -2j & \text{w.p. } \frac{1}{8j^2}
\end{cases}$

- $E[X_{nj}] = 0$ and $\text{var}(X_{nj}) = 1$. $B_n^2 = n$.
- Let's check the Lindeberg condition with $\epsilon = 1$.

\[
\frac{1}{n} \sum_j E[X^2_{nj}1(|X_{nj}| \geq \sqrt{n})] = \frac{1}{n} \sum_j 2 \times 4j^2 1(2j \geq \sqrt{n}) \frac{1}{8j^2} = \frac{1}{n} \sum_{j \geq \sqrt{n}/2} 1 \to 1
\]

- Since $\sigma_{nj}^2/B_n^2 = 1/n \to 0$, this implies that the CLT does not hold for the sum.
Consider $2n$ paired experimental units with measurement $(X_i, Y_i)_{i=1}^n$ in which X_j is the result of the treatment and Y_j is the result of control.

- H_0 is that the treatment has had no effect, i.e. $Z_j = X_j - Y_j$ conditioned on the magnitude $|Z_j|$ is symmetric, i.e. $P(Z_j = |z_j|) = P(Z_j = -|z_j|) = 1/2$.

Consider $2n$ paired experimental units with measurement $(X_i, Y_i)_{i=1}^n$ in which X_j is the result of the treatment and Y_j is the result of control.

- H_0 is that the treatment has had no effect, i.e. $Z_j = X_j - Y_j$ conditioned on the magnitude $|Z_j|$ is symmetric, i.e. $P(Z_j = |z_j|) = P(Z_j = -|z_j|) = 1/2$.
- Thus, under H_0, (Z_1, \ldots, Z_n) has 2^n possible values $(\pm|z_1|, \ldots, \pm|z_n|)$.

Permutation Tests

Consider $2n$ paired experimental units with measurement $(X_i, Y_i)_{i=1}^n$ in which X_j is the result of the treatment and Y_j is the result of control.

- H_0 is that the treatment has had no effect, i.e. $Z_j = X_j - Y_j$ conditioned on the magnitude $|Z_j|$ is symmetric, i.e.
 $$P(Z_j = |z_j|) = P(Z_j = -|z_j|) = 1/2.$$
- Thus, under H_0, (Z_1, \ldots, Z_n) has 2^n possible values $(\pm |z_1|, \ldots, \pm |z_n|)$.
- Conditioned on the magnitudes of the differences, $B_n^2 = \sum z_i^2$.

Assume that $\max_i z_i^2 / B_n^2 \to 0$. Then $\sum_i Z_i / B_n \xrightarrow{d} N(0, 1)$ using the Lindeberg-feller theorem.
Proof.

- Let's check the Lindeberg condition:

\[
\frac{\sum_{j=1}^{n} E[Z_j^2 1(|Z_j| \geq \epsilon B_n)||Z_1|, \ldots, |Z_n|]}{B_n^2} = \frac{\sum_j Z_j^2 1(|Z_j| \geq \epsilon B_n)}{B_n^2}
\leq \frac{(\sum_j Z_j^2) 1(\max_j |Z_j| \geq \epsilon B_n)}{B_n^2}
= 1(\max_j |Z_j| \geq \epsilon B_n)
\]

- Since \(\max_i z_i^2 / B_n^2 \to 0 \), the above is zero for all sufficiently large \(n \).
Tail probabilities

- Most often, we are interested in the question, how far is an empirical quantity from its “population variant”?
- This empirical quantity can be an eigenvalue of a matrix, or the weight vector learned using linear regression and so on.
- For rest of today, and a few more lectures we will brush up on tail inequalities.
- Lets start with the mean?
Concentration inequalities

• How will you bound $P(\bar{X}_n - \mu \geq t)$? Central limit theorem works under regularity conditions, but its only asymptotic.

• We will look at three methods:
 • Moment based:
 • Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
 • Martingale based methods: Azuma-Hoeffding, McDiarmid
Concentration inequalities

• How will you bound $P(|\bar{X}_n - \mu| \geq t)$? Central limit theorem works under regularity conditions, but its only asymptotic.

• We will look at three methods:
 • Moment based: Markov (first), Chebyshev (second)
Concentration inequalities

• How will you bound $P(|\bar{X}_n - \mu| \geq t)$? Central limit theorem works under regularity conditions, but its only asymptotic.

• We will look at three methods:
 • Moment based: Markov (first), Chebyshev (second)
 • Moment generating function based bounds:
Concentration inequalities

- How will you bound $P(|\bar{X}_n - \mu| \geq t)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
 - Moment based: Markov (first), Chebyshev (second)
 - Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
Concentration inequalities

• How will you bound \(P(|\bar{X}_n - \mu| \geq t) \)? Central limit theorem works under regularity conditions, but its only asymptotic.

• We will look at three methods:
 • Moment based: Markov (first), Chebyshev (second)
 • Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
 • Martingale based methods:
• How will you bound $P(|ar{X}_n - \mu| \geq t)$? Central limit theorem works under regularity conditions, but its only asymptotic.

• We will look at three methods:
 • Moment based: Markov (first), Chebyshev (second)
 • Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
 • Martingale based methods: Azuma-Hoeffding, McDiarmid