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Convergence of expectations: exchanging limit and integral

Theorem (Monotone convergence theorem)
If 0 ≤ X1 ≤ X2 ≤ · · · ≤ Xn ↑ X , a.s. then

E [Xn] → E [X ]

Lemma (Fatou’s lemma)
If Xn ≥ Y ∀n for some random variable Y with E |Y | < ∞ then

lim inf
n→∞ E [Xn] ≥ E [lim inf

n
Xn]

Theorem (Dominated convergence theorem)
If Xn

a.s.→ X and |Xn| ≤ Y with E [|Y |] < ∞, then

E [Xn] → E [X ]
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Convergence of expectations: exchanging limit and integral

• Another version of MCT requires Xi > Y s.t. EY > −∞.

• Consider Z ∼ U([0, 1])

• Xn = −1

z
1[z ∈ (0, 1/n)]

• This is an increasing sequence, Xn
a.s.→ 0

• But EXn = −
∫ 1/n

0
1/zdz = −∞
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Remember liminf and limsup

• lim inf
n→∞ an = lim

n→∞ inf
m≥n

am

• lim sup
n→∞

an = lim
n→∞ sup

m≥n
am

Figure 1: limsup and liminf always exist even though the sequence xn is not

converging. Courtest: wikipedia.

https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior
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MCT→ Fatou

Proof.

• Consider the random variable Xn − Y . These are positive. For all

m ≥ n,

inf
k≥n

(Xk − Y ) ≤ Xm − Y

E

[
inf
k≥n

(Xk − Y )

]
≤ E [Xm − Y ] Take E [] of both sides

≤ inf
m≥n

E [Xm − Y ]

lim
n→∞E

[
inf
k≥n

(Xk − Y )

]
≤ lim

n→∞ inf
m≥n

E [Xm − Y ] = lim inf
n→∞ E [Xn − Y ]

• All that is left, is to exchange limit and integral on LHS.

• Note that inf
k≥n

(Xk − Y ) is an increasing positive sequence. This

converges to lim inf
n→∞

(Xn − Y ). Apply MCT.
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We never used E |Y | < ∞

• Well, we are saying E [Y ] exists.

• Unless E |Y | < ∞, E [Y ] is not very well defined.

• Consider 1− 1 + 1/2− 1/2 + 1/3− 1/3 + 1/4− 1/4 + 1/5− 1/5 . . .

• This is clearly zero, right?

• But what if I permute it to have first two +ve and first -ve

• 1 + 1/2− 1 + 1/3 + 1/4− 1/2 + 1/5 + 1/6− 1/3 . . .—this is ln 2

• If you take a sum of the absolute values then that diverges.
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Fatou → DCT

Proof.

• Note that random variable −Y ≤ Xn ≤ Y .

• Also note that E [lim inf
n→∞ Xn] = E [X ] = E [lim sup

n→∞
Xn].

• Apply Fatou on Xn and −Xn.

E [lim inf
n→∞ Xn] ≤ lim inf

n→∞ E [Xn] ≤ lim sup
n→∞

E [Xn] ≤ E [lim sup
n→∞

Xn]

• But both ends equal E [X ] and so the middle two quantities must be

equal and hence proved.
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Things you should know

Consider n i.i.d. random variables Xi ∼ F .

Definition (Empirical distribution function)
The empirical distribution function is defined as:

Fn(x) =
1

n

∑
i

1(Xi ≤ x).

Theorem (Glivenko-Cantelli)
The random variable sup

x
|Fn(x)− F (x)| almost surely converges to zero.

P

(
sup
x

|Fn(x)− F (x)| → 0

)
= 1
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Things you should know

Let X1, . . .Xn be i.i.d random variables with E [|X1|] ≤ ∞, mean µ.

Theorem (Weak law of large numbers)

X̄n
P→ µ

Theorem (Strong law of large numbers)

X̄n
a.s.→ µ

Theorem (Central limit theorem)

If E [X2
i ] = σ2,

√
n(X̄n − µ)

d→ N(0, σ2).
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Things you should know

Let X1, . . .Xn be i.i.d random variables with mean µ.

Theorem (Berry Esseen)
If E [X2

i ] = σ2, and E [|Xi |
3] = ρ < ∞,

sup
x

∣∣∣∣P (√
n(X̄n − µ)

σ
≤ x

)
− Φ(x)

∣∣∣∣ ≤ Cρ

σ3
√
n

∀n,

where Φ(x) is the CDF of the standard normal and c is an universal

constant known to be greater than 0.4097 and less that 0.7975.
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Lindeberg-feller CLT for triangular arrays

X11

X21,X22

X31,X32,X33

...

Theorem
For each n let (Xni )

n
i=1 be independent random variables with mean zero

and variance σ2ni . Let Zn =
n∑

i=1

Xni and B2
n = var(Zn). Then

Zn/Bn
d→ N(0, 1), as long as the Lindeberg condition holds.
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The Lindeberg condition

Definition (Lindeberg condition)
For every ϵ > 0,

1

B2
n

n∑
j=1

E [X2
nj1(|Xnj | ≥ ϵBn)] → 0 as n → ∞ (1)

Converse: If
σ2nj

B2
n

→ 0 as n → ∞, i.e. no one variance plays a significant

role in the limit, and if Zn/Bn
d→ N(0, 1), then the Lindeberg condition

holds.

Necessary and Sufficient: If
σ2nj

B2
n

→ 0, the the Lindeberg condition is

necessary and sufficient to show the CLT.
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Example

Let X1, . . . ,Xn be independent random variables with mean zero and

variance one. Do you think
√
nX̄n

d→ N(0, 1)?

•

Xnj =


2j w.p.

1

8j2

0 w.p. 1− 1

4j2

−2j w.p.
1

8j2

• E [Xnj ] = 0 and var(Xnj ) = 1. B2
n = n.

• Lets check the Lindeberg condition with ϵ = 1.

1

n

∑
j

E [X2
nj1(|Xnj | ≥

√
n)] =

1

n

∑
j

2× 4j21(2j ≥
√
n)

1

8j2
=

1

n

∑
j≥

√
n/2

1 → 1

• Since σ2nj/B
2
n = 1/n → 0, this implies that the CLT does not hold for

the sum.
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Paired experiment example

Consider 2n paired experimental units with measurement (Xi ,Yi )
n
i=1 in

which Xj is the result of the treatment and Yj is the result of control.

• H0 is that the treatment has had no effect, i.e. Zj = Xj − Yj

conditioned on the magnitude |Zj | is symmetric, i.e.

P(Zj = |zj |) = P(Zj = −|zj |) = 1/2.

• Thus, under H0, (Z1, . . . ,Zn) has 2n possible values

(±|z1|, . . . ,±|zn|).

• Conditioned on the magnitudes of the differences, B2
n =

∑
i

z2i .

Assume that max
i

z2i /B
2
n → 0. Then

∑
i

Zi/Bn
d→ N(0, 1) using the

Lindeberg-feller theorem.
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Paired experiment example: proof

Proof.

• Lets check the Lindeberg condition:∑n
j=1 E [Z

2
j 1(|Zj | ≥ ϵBn)||Z1| = z1, . . . , |Zn| = zn]

B2
n

=

∑
j z

2
j 1(zj ≥ ϵBn)

B2
n

≤
(
∑

j z
2
j )1(maxj zj ≥ ϵBn)

B2
n

= 1(max
j

zj ≥ ϵBn)

• Since max
i

z2i /B
2
n → 0, the above is zero for all sufficiently large n.
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Getting the regular Lindeberg-Levy CLT from Lindeberg Feller

Proof.

• In this case, B2
n = nσ2.

• The L.C. condition boils down to checking if ∀ϵ

1

σ2
E[|X1|1(|X1| ≥

√
nσϵ)] → 0

• How will you show this?
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Lyapunov’s CLT

Theorem
Let X1, . . . ,Xn are mean zero independent random variables with

s2n =
∑
i

E [X2
i ]. As long as, for some δ > 0, Lyapunov’s condition holds,

i.e.

lim
n→∞

1

s2+δ
n

n∑
i=1

E[|Xi |
2+δ] → 0,

we have
1

sn

n∑
i=1

Xi
d→ N(0, 1)

• Prove this condition holds if L.C. holds.
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Tail probabilities

• Most often, we are interested in the question, how far is an empirical

quantity from its “population variant”?

• This empirical quantity can be an eigenvalue of a matrix, or the

weight vector learned using linear regression and so on.

• For rest of today, and a few more lectures we will brush up on tail

inequalities.

• Lets start with the mean?
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Concentration inequalities

• How will you bound P(|X̄n − µ| ≥ t)? Central limit theorem works

under regularity conditions, but its only asymptotic.

• We will look at three methods:

• Moment based:

Markov (first), Chebyshev (second)

• Moment generating function based bounds: Hoeffding, Chernoff,

Bernstein, subgaussian and subexponential random variables

• Martingale based methods: Azuma-Hoeffding, McDiarmid
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