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Convergence of expectations: exchanging limit and integral

Theorem (Monotone convergence theorem)
IfO<X; <Xp <---<Xnt X, as. then

E[Xn] — E[X]

Lemma (Fatou’s lemma)
If Xn > Y ¥n for some random variable Y with E|Y| < oo then

liminf E[Xn] > E[lim inf Xn]
n—o0 n
Theorem (Dominated convergence theorem)
If Xn 23 X and |Xn| < Y with E[|Y|] < oo, then

E[Xn] — E[X]



Convergence of expectations: exchanging limit and integral

Another version of MCT requires X; > Y s.t. EY > —oo.
Consider Z ~ U([0,1])

o Xn— %1[z € (0,1/n)]

I R . a.s.
This is an increasing sequence, Xp =3 0

1/n
But EXn:—/ 1/zdz = —o0
0



Remember liminf and limsup

e liminfap = lim inf am
n— oo n—00 m>n

e limsupap = lim sup am
n—o0 n—=00 m>p

limsup ,

Figure 1: limsup and liminf always exist even though the sequence x, is not
converging. Courtest: wikipedia.
https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior


https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior

MCT-— Fatou

Proof.

e Consider the random variable X, — Y. These are positive. For all

m > n,

inf (X, —Y)< Xm—Y
k'gn(k ) < Xm

E {k@f Xk — Y)} < E[Xm — Y] Take EJ] of both sides
~n

IN

inf E[Xm — Y]
m>n

lim E { inf (X, — Y)} < lim inf E[Xm — Y] = liminf E[Xn — Y]
n—o00 k>n n—00 m>n n— 00

o All that is left, is to exchange limit and integral on LHS.
e Note that kir;f(Xk —Y) is an increasing positive sequence. This

converges to lim inf(X, — Y). Apply MCT.



We never used E|Y| < oo

o Well, we are saying E[Y] exists.

e Unless E|Y| < oo, E[Y] is not very well defined.

o Consider 1 —1+1/2—1/2+1/3-1/3+1/4—1/4+1/5—1/5...
e This is clearly zero, right?

e But what if | permute it to have first two +ve and first -ve

e 1+1/2—-1+1/3+1/4—1/2+1/5+1/6—1/3...—this is In2

e If you take a sum of the absolute values then that diverges.



Fatou —» DCT

Proof.
e Note that random variable —Y < X, < Y.
e Also note that E[liminf Xp] = E[X] = E[limsup Xp].
n—oo n—00

e Apply Fatou on X, and —Xp.

Efliminf Xn] < liminf E[Xn] < limsup E[Xn] < E[lim sup Xn]
n—00 n—00 n—o00 n—o00

e But both ends equal E[X] and so the middle two quantities must be
equal and hence proved.



Things you should know

Consider n i.i.d. random variables X; ~ F.

Definition (Empirical distribution function)
The empirical distribution function is defined as:

Fal) = = 710X < %),

1

Theorem (Glivenko-Cantelli
The random variable sup |Fn(x) — F(x)| almost surely converges to zero.
X

P (sip |Fa(x) — F(x)] — o) =1



Things you should know

Let Xq,...Xn be i.i.d random variables with E[|X7]] < oo, mean p.
Theorem (Weak law of large numbers)

)_<n£>,u

Theorem (Strong law of large numbers)

)—<n 3._S>‘ m

Theorem (Central limit theorem)
If EIX?] = 02, v/n(Xn — 1) % N(0,02).



Things you should know

Let Xj,...Xn be i.i.d random variables with mean p.

Theorem (Berry Esseen)
/fE[X ]:O' andE[\X\ |=p< o0,

P(ﬁ(anu) Sx) _ o) <

(o2

sup Vn,

X

f

where ®(x) is the CDF of the standard normal and c is an universal
constant known to be greater than 0.4097 and less that 0.7975.



Lindeberg-feller CLT for triangular arrays

X11
X21, X22
X31,X32, X33

Theorem
For each n let (X,,;)/—, be independent random variables with mean zero
n

and variance 0,2,,-. Let Zn = ZX,,,- and B2 = var(Zs). Then
i=1
Zn/Bn 4 N(0,1), as long as the Lindeberg condition holds.
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The Lindeberg condition

Definition (Lindeberg condition)
For every ¢ > 0,

1 & 2
52 Z E[X;51(1Xp;] > €Bn)] — 0 as n — oo (1)
nj=1
2
g
Converse: If B—”é — 0 as n — oo, i.e. no one variance plays a significant
n
role in the limit, and if Z,/Bn LA N(0,1), then the Lindeberg condition
holds.
2
Inj

Necessary and Sufficient: If — 0, the the Lindeberg condition is

B3
necessary and sufficient to show the CLT.

11



Let Xq,...,Xn be independent random variables with mean zero and
variance one. Do you think v/nXn LA N(0,1)?

12



Let Xq,...,Xn be independent random variables with mean zero and
variance one. Do you think v/nXn LA N(0,1)?

1

2 w.p. —=

J P 52
) 1 i
an w.p. 1— 22

12



Let Xq,...,Xn be independent random variables with mean zero and
variance one. Do you think v/nXn LA N(0,1)?

1
2 w.p. —=
-J p 8j2
~Jo 1 i
an w.p. 1— 22
-J -p 8j2

o E[X,j] =0 and var(X,;) =1. B = n.
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Let Xq,...,Xn be independent random variables with mean zero and
variance one. Do you think v/nXn LA N(0,1)?

1
2 W.p. —
J P 572
=<0 1 i
Xnj w.p _4j2
-2 w i
-J .p 8j2

® E[Xpj] =0 and var(X,;) = 1. B2 — .
o Lets check the Lindeberg condition with e = 1.

_1
,ZE[ 1(|Xpjl > v/n)] = 22><4j 1(2J>f) - Z 151
i>\/n/2

12



Let Xq,...,Xn be independent random variables with mean zero and
variance one. Do you think v/nXn LA N(0,1)?

[ ]
1
2j w.p. —5
j P 572 1
j WP o

® E[Xpj] =0 and var(X,;) = 1. B2 — .
o Lets check the Lindeberg condition with e = 1.

1
725[ 1(|Xpj| > Vn)] = sz4j 1(2J>f) - > 11
j>\/n/2

e Since a?,j/B,% =1/n— 0, this implies that the CLT does not hold for

the sum.
19



Paired experiment example

Consider 2n paired experimental units with measurement (X;, Y;)i_; in
which X; is the result of the treatment and Y; is the result of control.

e Hy is that the treatment has had no effect, i.e. ZJ = XJ - YJ
conditioned on the magnitude |Z;| is symmetric, i.e.

P(Zj = I5]) = P(Zj = ~Iz]) = 1/2

13
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Paired experiment example

Consider 2n paired experimental units with measurement (X;, Y;)i_; in
which X; is the result of the treatment and Y; is the result of control.
e Hy is that the treatment has had no effect, i.e. ZJ = XJ - YJ
conditioned on the magnitude |Z;| is symmetric, i.e.
P(Z = I5]) = P(Z; = ~Izjl) = 1/2
e Thus, under Hy, (Z1,...,Zn) has 2" possible values
(£]z1],. .., %lzn]).
o Conditioned on the magnitudes of the differences, B7 = > 27.
i
Assume that maxz,-z/B?, — 0. Then ZZ,-/Bn 4 N(0,1) using the
1 i

!
Lindeberg-feller theorem.
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Paired experiment example: proof

Proof.

e Lets check the Lindeberg condition:

2
1y EZ21(Z)| > Bn)l|Zy] = 21, .| Zn| = 20] ¥ 2P1(zj > Bn)

B2 B3
_ (> zJ-2)1(maxj zj > €Bn)
< B2
= 1(maxz; > €Bn)

J
e Since max z,-Z/B,z7 — 0, the above is zero for all sufficiently large n.
1

O

14



Getting the regular Lindeberg-Levy CLT from Lindeberg Feller

Proof.

e In this case, B,27 = no?.

e The L.C. condition boils down to checking if Ve
1
S ElIX (X = Vnoe)] = 0

e How will you show this?

15



Lyapunov’s CLT

Theorem
Let Xq,...,Xn are mean zero independent random variables with

sn = E[X?]. As long as, for some 6 > 0, Lyapunov's condition holds,
i
Le.

n
. 2445

n i=1
we have

1~y d
— > X; 5 N(0,1)
sn i=1

e Prove this condition holds if L.C. holds.

16



Tail probabilities

e Most often, we are interested in the question, how far is an empirical
quantity from its “population variant”?

e This empirical quantity can be an eigenvalue of a matrix, or the
weight vector learned using linear regression and so on.

e For rest of today, and a few more lectures we will brush up on tail
inequalities.

e Lets start with the mean?

17



Concentration inequalities

e How will you bound P(| X, — u| > t)? Central limit theorem works
under regularity conditions, but its only asymptotic.

o We will look at three methods:

e Moment based:

18



Concentration inequalities

e How will you bound P(| X, — u| > t)? Central limit theorem works
under regularity conditions, but its only asymptotic.

e We will look at three methods:
e Moment based: Markov (first), Chebyshev (second)

18



Concentration inequalities

e How will you bound P(| X, — u| > t)? Central limit theorem works
under regularity conditions, but its only asymptotic.
o We will look at three methods:

e Moment based: Markov (first), Chebyshev (second)
e Moment generating function based bounds:

18



Concentration inequalities

e How will you bound P(| X, — u| > t)? Central limit theorem works
under regularity conditions, but its only asymptotic.
o We will look at three methods:

e Moment based: Markov (first), Chebyshev (second)
e Moment generating function based bounds: Hoeffding, Chernoff,
Bernstein, subgaussian and subexponential random variables

18



Concentration inequalities

e How will you bound P(| X, — u| > t)? Central limit theorem works
under regularity conditions, but its only asymptotic.
o We will look at three methods:
e Moment based: Markov (first), Chebyshev (second)
e Moment generating function based bounds: Hoeffding, Chernoff,
Bernstein, subgaussian and subexponential random variables
e Martingale based methods:

18



Concentration inequalities

e How will you bound P(| X, — u| > t)? Central limit theorem works
under regularity conditions, but its only asymptotic.
o We will look at three methods:
e Moment based: Markov (first), Chebyshev (second)
e Moment generating function based bounds: Hoeffding, Chernoff,
Bernstein, subgaussian and subexponential random variables
e Martingale based methods: Azuma-Hoeffding, McDiarmid
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