SDS 384 11: Theoretical Statistics
 Lecture 2: Stochastic Convergence

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Convergence of expectations: exchanging limit and integral

Theorem (Monotone convergence theorem)
If $0 \leq X_{1} \leq X_{2} \leq \cdots \leq X_{n} \uparrow X$, a.s. then

$$
E\left[X_{n}\right] \rightarrow E[X]
$$

Lemma (Fatou's lemma)
If $X_{n} \geq Y \forall n$ for some random variable Y with $E|Y|<\infty$ then

$$
\liminf _{n \rightarrow \infty} E\left[X_{n}\right] \geq E\left[\liminf _{n} X_{n}\right]
$$

Theorem (Dominated convergence theorem) If $X_{n} \xrightarrow{\text { a.s. }} X$ and $\left|X_{n}\right| \leq Y$ with $E[|Y|]<\infty$, then

$$
E\left[X_{n}\right] \rightarrow E[X]
$$

Convergence of expectations: exchanging limit and integral

- Another version of MCT requires $X_{i}>Y$ s.t. $E Y>-\infty$.
- Consider $Z \sim U([0,1])$
- $X_{n}=-\frac{1}{z} 1[z \in(0,1 / n)]$
- This is an increasing sequence, $X_{n} \xrightarrow{\text { a.s. }} 0$
- But $E X_{n}=-\int_{0}^{1 / n} 1 / z d z=-\infty$

Remember liminf and limsup

- $\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \inf _{m \geq n} a_{m}$
- $\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \sup _{m \geq n} a_{m}$

Figure 1: limsup and liminf always exist even though the sequence x_{n} is not converging. Courtest: wikipedia.
https://en.wikipedia.org/wiki/Limit_inferior_and_limit_superior

MCT \rightarrow Fatou

Proof.

- Consider the random variable $X_{n}-Y$. These are positive. For all $m \geq n$,

$$
\begin{aligned}
\inf _{k \geq n}\left(X_{k}-Y\right) & \leq X_{m}-Y \\
E\left[\inf _{k \geq n}\left(X_{k}-Y\right)\right] & \leq E\left[X_{m}-Y\right] \quad \text { Take } E[] \text { of both sides } \\
& \leq \inf _{m \geq n} E\left[X_{m}-Y\right]
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} E\left[\inf _{k \geq n}\left(X_{k}-Y\right)\right] \leq \lim _{n \rightarrow \infty} \inf _{m \geq n} E\left[X_{m}-Y\right]=\liminf _{n \rightarrow \infty} E\left[X_{n}-Y\right]
$$

- All that is left, is to exchange limit and integral on LHS.
- Note that $\inf _{k \geq n}\left(X_{k}-Y\right)$ is an increasing positive sequence. This converges to $\liminf _{n \rightarrow \infty}\left(X_{n}-Y\right)$. Apply MCT.

We never used $E|Y|<\infty$

- Well, we are saying $E[Y]$ exists.
- Unless $E|Y|<\infty, E[Y]$ is not very well defined.
- Consider $1-1+1 / 2-1 / 2+1 / 3-1 / 3+1 / 4-1 / 4+1 / 5-1 / 5 \ldots$
- This is clearly zero, right?
- But what if I permute it to have first two +ve and first -ve
- $1+1 / 2-1+1 / 3+1 / 4-1 / 2+1 / 5+1 / 6-1 / 3 \ldots$-this is $\ln 2$
- If you take a sum of the absolute values then that diverges.

Fatou \rightarrow DCT

Proof.

- Note that random variable $-Y \leq X_{n} \leq Y$.
- Also note that $E\left[\liminf _{n \rightarrow \infty} X_{n}\right]=E[X]=E\left[\limsup _{n \rightarrow \infty} X_{n}\right]$.
- Apply Fatou on X_{n} and $-X_{n}$.

$$
E\left[\liminf _{n \rightarrow \infty} X_{n}\right] \leq \liminf _{n \rightarrow \infty} E\left[X_{n}\right] \leq \limsup _{n \rightarrow \infty} E\left[X_{n}\right] \leq E\left[\limsup _{n \rightarrow \infty} X_{n}\right]
$$

- But both ends equal $E[X]$ and so the middle two quantities must be equal and hence proved.

Things you should know

Consider n i.i.d. random variables $X_{i} \sim F$.
Definition (Empirical distribution function)
The empirical distribution function is defined as:

$$
F_{n}(x)=\frac{1}{n} \sum_{i} 1\left(X_{i} \leq x\right) .
$$

Theorem (Glivenko-Cantelli)
The random variable $\sup _{x}\left|F_{n}(x)-F(x)\right|$ almost surely converges to zero.

$$
P\left(\sup _{x}\left|F_{n}(x)-F(x)\right| \rightarrow 0\right)=1
$$

Things you should know

Let $X_{1}, \ldots X_{n}$ be i.i.d random variables with $E\left[\left|X_{1}\right|\right] \leq \infty$, mean μ.
Theorem (Weak law of large numbers)

$$
\bar{X}_{n} \xrightarrow{P} \mu
$$

Theorem (Strong law of large numbers)

$$
\bar{X}_{n} \xrightarrow{\text { a.s. }} \mu
$$

Theorem (Central limit theorem)
If $E\left[X_{i}^{2}\right]=\sigma^{2}, \sqrt{n}\left(\bar{X}_{n}-\mu\right) \xrightarrow{d} N\left(0, \sigma^{2}\right)$.

Things you should know

Let $X_{1}, \ldots X_{n}$ be i.i.d random variables with mean μ.
Theorem (Berry Esseen)
If $E\left[X_{i}^{2}\right]=\sigma^{2}$, and $E\left[\left|X_{i}\right|^{3}\right]=\rho<\infty$,

$$
\sup _{x}\left|P\left(\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \leq x\right)-\Phi(x)\right| \leq \frac{C \rho}{\sigma^{3} \sqrt{n}} \quad \forall n,
$$

where $\Phi(x)$ is the CDF of the standard normal and c is an universal constant known to be greater than 0.4097 and less that 0.7975 .

Lindeberg-feller CLT for triangular arrays

$$
\begin{aligned}
& x_{11} \\
& x_{21}, x_{22} \\
& x_{31}, x_{32}, x_{33}
\end{aligned}
$$

Theorem

For each n let $\left(X_{n i}\right)_{i=1}^{n}$ be independent random variables with mean zero and variance $\sigma_{n i}^{2}$. Let $Z_{n}=\sum_{i=1}^{n} x_{n i}$ and $B_{n}^{2}=\operatorname{var}\left(Z_{n}\right)$. Then
$Z_{n} / B_{n} \xrightarrow{d} N(0,1)$, as long as the Lindeberg condition holds.

The Lindeberg condition

Definition (Lindeberg condition)
For every $\epsilon>0$,

$$
\begin{equation*}
\frac{1}{B_{n}^{2}} \sum_{j=1}^{n} E\left[X_{n j}^{2} 1\left(\left|X_{n j}\right| \geq \epsilon B_{n}\right)\right] \rightarrow 0 \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

Converse: If $\frac{\sigma_{n j}^{2}}{B_{n}^{2}} \rightarrow 0$ as $n \rightarrow \infty$, i.e. no one variance plays a significant role in the limit, and if $Z_{n} / B_{n} \xrightarrow{d} N(0,1)$, then the Lindeberg condition holds.
Necessary and Sufficient: If $\frac{\sigma_{n j}^{2}}{B_{n}^{2}} \rightarrow 0$, the the Lindeberg condition is necessary and sufficient to show the CLT.

Example

Let X_{1}, \ldots, X_{n} be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_{n} \xrightarrow{d} N(0,1)$?

Example

Let X_{1}, \ldots, X_{n} be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_{n} \xrightarrow{d} N(0,1)$?

$$
X_{n j}= \begin{cases}2 j & \text { w.p. } \frac{1}{8 j^{2}} \\ 0 & \text { w.p. } 1-\frac{1}{4 j^{2}} \\ -2 j & \text { w.p. } \frac{1}{8 j^{2}}\end{cases}
$$

Example

Let X_{1}, \ldots, X_{n} be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_{n} \xrightarrow{d} N(0,1)$?

$$
X_{n j}= \begin{cases}2 j & \text { w.p. } \frac{1}{8 j^{2}} \\ 0 & \text { w.p. } 1-\frac{1}{4 j^{2}} \\ -2 j & \text { w.p. } \frac{1}{8 j^{2}}\end{cases}
$$

- $E\left[X_{n j}\right]=0$ and $\operatorname{var}\left(X_{n j}\right)=1 . B_{n}^{2}=n$.

Example

Let X_{1}, \ldots, X_{n} be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_{n} \xrightarrow{d} N(0,1)$?

$$
X_{n j}= \begin{cases}2 j & \text { w.p. } \frac{1}{8 j^{2}} \\ 0 & \text { w.p. } 1-\frac{1}{4 j^{2}} \\ -2 j & \text { w.p. } \frac{1}{8 j^{2}}\end{cases}
$$

- $E\left[X_{n j}\right]=0$ and $\operatorname{var}\left(X_{n j}\right)=1 . B_{n}^{2}=n$.
- Lets check the Lindeberg condition with $\epsilon=1$.

$$
\frac{1}{n} \sum_{j} E\left[X_{n j}^{2} 1\left(\left|X_{n j}\right| \geq \sqrt{n}\right)\right]=\frac{1}{n} \sum_{j} 2 \times 4 j^{2} 1(2 j \geq \sqrt{n}) \frac{1}{8 j^{2}}=\frac{1}{n} \sum_{j \geq \sqrt{n} / 2} 1 \rightarrow 1
$$

Example

Let X_{1}, \ldots, X_{n} be independent random variables with mean zero and variance one. Do you think $\sqrt{n} \bar{X}_{n} \xrightarrow{d} N(0,1)$?

$$
X_{n j}= \begin{cases}2 j & \text { w.p. } \frac{1}{8 j^{2}} \\ 0 & \text { w.p. } 1-\frac{1}{4 j^{2}} \\ -2 j & \text { w.p. } \frac{1}{8 j^{2}}\end{cases}
$$

- $E\left[X_{n j}\right]=0$ and $\operatorname{var}\left(X_{n j}\right)=1 . B_{n}^{2}=n$.
- Lets check the Lindeberg condition with $\epsilon=1$.

$$
\frac{1}{n} \sum_{j} E\left[X_{n j}^{2} 1\left(\left|X_{n j}\right| \geq \sqrt{n}\right)\right]=\frac{1}{n} \sum_{j} 2 \times 4 j^{2} 1(2 j \geq \sqrt{n}) \frac{1}{8 j^{2}}=\frac{1}{n} \sum_{j \geq \sqrt{n} / 2} 1 \rightarrow 1
$$

- Since $\sigma_{n j}^{2} / B_{n}^{2}=1 / n \rightarrow 0$, this implies that the CLT does not hold for the sum.

Paired experiment example

Consider $2 n$ paired experimental units with measurement $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ in which X_{j} is the result of the treatment and Y_{j} is the result of control.

- H_{0} is that the treatment has had no effect, i.e. $Z_{j}=X_{j}-Y_{j}$ conditioned on the magnitude $\left|Z_{j}\right|$ is symmetric, i.e.

$$
P\left(Z_{j}=\left|z_{j}\right|\right)=P\left(Z_{j}=-\left|z_{j}\right|\right)=1 / 2 .
$$

Paired experiment example

Consider $2 n$ paired experimental units with measurement $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ in which X_{j} is the result of the treatment and Y_{j} is the result of control.

- H_{0} is that the treatment has had no effect, i.e. $Z_{j}=X_{j}-Y_{j}$ conditioned on the magnitude $\left|Z_{j}\right|$ is symmetric, i.e.

$$
P\left(Z_{j}=\left|z_{j}\right|\right)=P\left(Z_{j}=-\left|z_{j}\right|\right)=1 / 2
$$

- Thus, under $H_{0},\left(Z_{1}, \ldots, Z_{n}\right)$ has 2^{n} possible values $\left(\pm\left|z_{1}\right|, \ldots, \pm\left|z_{n}\right|\right)$.

Paired experiment example

Consider $2 n$ paired experimental units with measurement $\left(X_{i}, Y_{i}\right)_{i=1}^{n}$ in which X_{j} is the result of the treatment and Y_{j} is the result of control.

- H_{0} is that the treatment has had no effect, i.e. $Z_{j}=X_{j}-Y_{j}$ conditioned on the magnitude $\left|Z_{j}\right|$ is symmetric, i.e.

$$
P\left(Z_{j}=\left|z_{j}\right|\right)=P\left(Z_{j}=-\left|z_{j}\right|\right)=1 / 2 .
$$

- Thus, under $H_{0},\left(Z_{1}, \ldots, Z_{n}\right)$ has 2^{n} possible values $\left(\pm\left|z_{1}\right|, \ldots, \pm\left|z_{n}\right|\right)$.
- Conditioned on the magnitudes of the differences, $B_{n}^{2}=\sum_{i} z_{i}^{2}$. Assume that $\max _{i} z_{i}^{2} / B_{n}^{2} \rightarrow 0$. Then $\sum_{i} z_{i} / B_{n} \xrightarrow{d} N(0,1)$ using the Lindeberg-feller theorem.

Paired experiment example: proof

Proof.

- Lets check the Lindeberg condition:

$$
\begin{aligned}
& \frac{\sum_{j=1}^{n} E\left[Z_{j}^{2} 1\left(\left|Z_{j}\right| \geq \epsilon B_{n}\right)| | Z_{1}\left|=z_{1}, \ldots,\left|Z_{n}\right|=z_{n}\right]\right.}{B_{n}^{2}}=\frac{\sum_{j} z_{j}^{2} 1\left(z_{j} \geq \epsilon B_{n}\right)}{B_{n}^{2}} \\
& \leq \frac{\left(\sum_{j} z_{j}^{2}\right) 1\left(\max _{j} z_{j} \geq \epsilon B_{n}\right)}{B_{n}^{2}} \\
& =1\left(\max _{j} z_{j} \geq \epsilon B_{n}\right)
\end{aligned}
$$

- Since $\max _{i} z_{i}^{2} / B_{n}^{2} \rightarrow 0$, the above is zero for all sufficiently large n.

Getting the regular Lindeberg-Levy CLT from Lindeberg Feller

Proof.

- In this case, $B_{n}^{2}=n \sigma^{2}$.
- The L.C. condition boils down to checking if $\forall \epsilon$

$$
\frac{1}{\sigma^{2}} \mathbb{E}\left[\left|X_{1}\right| 1\left(\left|X_{1}\right| \geq \sqrt{n} \sigma \epsilon\right)\right] \rightarrow 0
$$

- How will you show this?

Lyapunov's CLT

Theorem

Let X_{1}, \ldots, X_{n} are mean zero independent random variables with $s_{n}^{2}=\sum_{i} E\left[X_{i}^{2}\right]$. As long as, for some $\delta>0$, Lyapunov's condition holds,
i.e.

$$
\lim _{n \rightarrow \infty} \frac{1}{s_{n}^{2+\delta}} \sum_{i=1}^{n} \mathbb{E}\left[\left|X_{i}\right|^{2+\delta}\right] \rightarrow 0
$$

we have

$$
\frac{1}{s_{n}} \sum_{i=1}^{n} X_{i} \xrightarrow{d} N(0,1)
$$

- Prove this condition holds if L.C. holds.

Tail probabilities

- Most often, we are interested in the question, how far is an empirical quantity from its "population variant"?
- This empirical quantity can be an eigenvalue of a matrix, or the weight vector learned using linear regression and so on.
- For rest of today, and a few more lectures we will brush up on tail inequalities.
- Lets start with the mean?

Concentration inequalities

- How will you bound $P\left(\left|\bar{X}_{n}-\mu\right| \geq t\right)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
- Moment based:

Concentration inequalities

- How will you bound $P\left(\left|\bar{X}_{n}-\mu\right| \geq t\right)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
- Moment based: Markov (first), Chebyshev (second)

Concentration inequalities

- How will you bound $P\left(\left|\bar{X}_{n}-\mu\right| \geq t\right)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
- Moment based: Markov (first), Chebyshev (second)
- Moment generating function based bounds:

Concentration inequalities

- How will you bound $P\left(\left|\bar{X}_{n}-\mu\right| \geq t\right)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
- Moment based: Markov (first), Chebyshev (second)
- Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables

Concentration inequalities

- How will you bound $P\left(\left|\bar{X}_{n}-\mu\right| \geq t\right)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
- Moment based: Markov (first), Chebyshev (second)
- Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
- Martingale based methods:

Concentration inequalities

- How will you bound $P\left(\left|\bar{X}_{n}-\mu\right| \geq t\right)$? Central limit theorem works under regularity conditions, but its only asymptotic.
- We will look at three methods:
- Moment based: Markov (first), Chebyshev (second)
- Moment generating function based bounds: Hoeffding, Chernoff, Bernstein, subgaussian and subexponential random variables
- Martingale based methods: Azuma-Hoeffding, McDiarmid

