SDS 384 11: Theoretical Statistics
 Lecture 3: Concentration inequalities

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Remember Markov's inequality?

Theorem

For $X \geq 0, E[X] \leq \infty, t>0$, we have:

$$
P(X \geq t) \leq \frac{E[X]}{t}
$$

Use total expectation theorem.

$$
E[X]=E[X \mid X \geq t] P(X \geq t)+E[X \mid X<t] P(X<t)
$$

Remember Markov's inequality?

Theorem

For $X \geq 0, E[X] \leq \infty, t>0$, we have:

$$
P(X \geq t) \leq \frac{E[X]}{t}
$$

Use total expectation theorem.

$$
\begin{aligned}
E[X] & =E[X \mid X \geq t] P(X \geq t)+E[X \mid X<t] P(X<t) \\
& \geq E[X \mid X \geq t] P(X \geq t)
\end{aligned}
$$

Remember Markov's inequality?

Theorem

For $X \geq 0, E[X] \leq \infty, t>0$, we have:

$$
P(X \geq t) \leq \frac{E[X]}{t}
$$

Use total expectation theorem.

$$
\begin{aligned}
E[X] & =E[X \mid X \geq t] P(X \geq t)+E[X \mid X<t] P(X<t) \\
& \geq E[X \mid X \geq t] P(X \geq t) \\
& \geq t P(X \geq t) \\
P(X \geq t) & \leq \frac{E[X]}{t}
\end{aligned}
$$

Higher order moments

Theorem (Chebyshev's)

For $t>0$

$$
P(|X-\mu| \geq t)=P\left((X-\mu)^{2} \geq t^{2}\right) \leq \frac{E\left[(X-\mu)^{2}\right]}{t^{2}}=\frac{\operatorname{var}(X)}{t^{2}}
$$

Theorem (Higher order markov)

For $t>0$

$$
P(|X-\mu| \geq t)=P\left(|X-\mu|^{k} \geq t^{k}\right) \leq \frac{E\left[|X-\mu|^{k}\right]}{t^{k}}
$$

Chernoff bounds

Theorem (Chernoff bound for Gaussians)

Let $X_{i} \sim N\left(\mu, \sigma^{2}\right)$ be independent random variables. Let $X:=\sum_{i} X_{i}$.

$$
P(X / n-\mu \geq t) \leq e^{-\frac{n t^{2}}{2 \sigma^{2}}}
$$

Proof.

Following in the same lines:

$$
\begin{aligned}
P(X / n-\mu \geq t) \inf _{\lambda \geq 0} e^{-n \lambda t} E\left[e^{\lambda(X-n \mu)}\right] & =\inf _{\lambda \geq 0} e^{-n \lambda t} \prod_{i} E\left[e^{\lambda\left(X_{i}-\mu\right)}\right] \\
\left(\text { Since } E\left[e^{\lambda X}\right]=e^{\lambda \mu+\sigma^{2} \lambda^{2} / 2}\right) & =\inf _{\lambda \geq 0} e^{-n \lambda t+n \sigma^{2} \lambda^{2} / 2} \\
\text { (Since } \lambda=t / \sigma^{2} \text { minimizes this) } & =e^{-\frac{n t^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Is it tight?

- Let $Z \sim N(0,1)$. We can show that for $z>0$,

$$
\phi(z)\left(\frac{1}{z}-\frac{1}{z^{3}}\right) \leq P(Z \geq z) \leq \phi(z)\left(\frac{1}{z}-\frac{1}{z^{3}}+\frac{3}{z^{5}}\right),
$$

where $\phi(z)$ is the density of a standard normal.

- Since $\bar{X}_{n} \sim N\left(\mu, \sigma^{2} / n\right), \lim _{n \rightarrow \infty} \log P\left(\bar{X}_{n}-\mu \geq t\right) / n=-\frac{t^{2}}{2 \sigma^{2}}$
- So the Chernoff bound is asymptotically tight, in the sense that it gets the constant inside the exponent right.

Chernoff bound

Theorem (Chernoff bound for Bernoullis)

Let $X_{i} \in\{0,1\}$ be independent random variables with $E\left[X_{i}\right]=p_{i}$. Let $X:=\sum_{i} X_{i}, \mu:=\sum_{i} p_{i}$. For $0<\delta<1$,

$$
P(X \geq \mu(1+\delta)) \leq e^{-\delta^{2} \mu / 3} \quad P(X \leq \mu(1-\delta)) \leq e^{-\delta^{2} \mu / 2}
$$

Proof.

$$
P(X \geq \mu(1+\delta))=\inf _{\lambda \geq 0} P\left(e^{\lambda X} \geq e^{\lambda \mu(1+\delta)}\right) \leq \inf _{\lambda \geq 0} e^{-\lambda \mu(1+\delta)} \underbrace{E\left[e^{\lambda X}\right]}_{\text {MGF of } X}
$$

Chernoff continued

$$
\begin{aligned}
\inf _{\lambda \geq 0} e^{-\lambda \mu(1+\delta)} E\left[e^{\lambda X}\right] & =\inf _{\lambda \geq 0} e^{-\lambda \mu(1+\delta)} \prod_{i} E\left[e^{\lambda X_{i}}\right] \\
& =\inf _{\lambda \geq 0} e^{-\lambda \mu(1+\delta)} \prod_{i}\left(e^{\lambda} p_{i}+1-p_{i}\right)
\end{aligned}
$$

$$
\left(\text { Since } 1+x \leq e^{x} \text { for } x \geq 0\right) \leq \inf _{\lambda \geq 0} e^{-\lambda \mu(1+\delta)} \prod_{i} e^{p_{i}\left(e^{\lambda}-1\right)}
$$

$$
=\inf _{\lambda \geq 0} e^{-\lambda \mu(1+\delta)+\mu\left(e^{\lambda}-1\right)}
$$

$$
(\text { minimized at } \lambda=\log (1+\delta))=e^{\mu(\delta-(1+\delta) \log (1+\delta))}
$$

$$
\leq e^{-\mu \delta^{2} / 3}
$$

The last line follows from the fact that $\log (1+x) \geq x /(1+x / 2)$ for $x>0$

Hoeffding's lemma

Theorem

For a random variable $X \in[a, b]$ with $E[X]=\mu$ and $\lambda \in \mathbb{R}$,

$$
M_{X-\mu}(\lambda) \leq e^{\frac{\lambda^{2}(b-a)^{2}}{8}}
$$

- In comparison, for a Gaussian random variable $X \sim N\left(\mu, \sigma^{2}\right)$,

$$
M_{X-\mu}(\lambda)=e^{\frac{\lambda^{2} \sigma^{2}}{2}}
$$

- For a bounded random variable $X \in[a, b], \operatorname{var}(X) \leq(b-a)^{2} / 4$ from Popoviciu's inequality.

Hoeffding's lemma

Theorem

For a random variable $X \in[a, b]$ with $E[X]=\mu$ and $\lambda \in \mathbb{R}$,

$$
M_{X-\mu}(\lambda) \leq e^{\frac{\lambda^{2}(b-a)^{2}}{8}}
$$

- In comparison, for a Gaussian random variable $X \sim N\left(\mu, \sigma^{2}\right)$,

$$
M_{X-\mu}(\lambda)=e^{\frac{\lambda^{2} \sigma^{2}}{2}}
$$

- For a bounded random variable $X \in[a, b], \operatorname{var}(X) \leq(b-a)^{2} / 4$ from Popoviciu's inequality.
- Recall that $E\left[(X-t)^{2}\right]$ is minimized at $t=E[X]$.

Hoeffding's lemma

Theorem

For a random variable $X \in[a, b]$ with $E[X]=\mu$ and $\lambda \in \mathbb{R}$,

$$
M_{X-\mu}(\lambda) \leq e^{\frac{\lambda^{2}(b-a)^{2}}{8}}
$$

- In comparison, for a Gaussian random variable $X \sim N\left(\mu, \sigma^{2}\right)$,

$$
M_{X-\mu}(\lambda)=e^{\frac{\lambda^{2} \sigma^{2}}{2}}
$$

- For a bounded random variable $X \in[a, b], \operatorname{var}(X) \leq(b-a)^{2} / 4$ from Popoviciu's inequality.
- Recall that $E\left[(X-t)^{2}\right]$ is minimized at $t=E[X]$.
- So $\operatorname{var}(X) \leq E\left[(X-(a+b) / 2)^{2}\right] \leq \frac{(b-a)^{2}}{4}$

MGF of Rademacher variables

A Rademacher random variable ϵ takes values in $\{-1,1\}$ equiprobable.

$$
\begin{aligned}
E\left[e^{\lambda \epsilon}\right] & =\frac{e^{\lambda}+e^{-\lambda}}{2} \\
& =\sum_{i} \frac{\lambda^{2 i}}{(2 i)!} \\
& \leq \sum_{i} \frac{\lambda^{2 i}}{2^{i} i!} \\
& =e^{\lambda^{2} / 2}
\end{aligned}
$$

Hoeffding's Lemma: weaker version

Theorem

For a random variable $X \in[a, b]$ with $E[X]=\mu$ and $\lambda \in \mathbb{R}$,

$$
M_{X-\mu}(\lambda) \leq e^{\frac{\lambda^{2}(b-a)^{2}}{2}}
$$

Hoeffding's Lemma: weaker version

Theorem

For a random variable $X \in[a, b]$ with $E[X]=\mu$ and $\lambda \in \mathbb{R}$,

$$
M_{X-\mu}(\lambda) \leq e^{\frac{\lambda^{2}(b-a)^{2}}{2}}
$$

- Consider an iid copy X^{\prime} of X. Also consider a Radamacher random variable ϵ.

$$
\begin{aligned}
E\left[e^{\lambda(X-E[X])}\right] & =E\left[e^{\lambda\left(X-E_{X^{\prime}}\left[X^{\prime}\right]\right)}\right]=E_{X}\left[e^{\lambda E_{X^{\prime}}\left(X-X^{\prime}\right)}\right] \\
& \leq E_{X, X^{\prime}} e^{\lambda\left(X-X^{\prime}\right)}=E_{X, X^{\prime}} E_{\epsilon} e^{\epsilon \lambda\left(X-X^{\prime}\right)} \\
& \leq E_{X, X^{\prime}} e^{\frac{\lambda^{2}\left(X-X^{\prime}\right)^{2}}{2}} \leq e^{\frac{\lambda^{2}(b-a)^{2}}{2}}
\end{aligned}
$$

Hoeffding's Lemma: stronger version

- Cumulant generating function

$$
K_{X}(t)=\log E[\exp (t X)]=\kappa_{1} x+\kappa_{2} \frac{x^{2}}{2}+\kappa_{3} \frac{x^{3}}{3!}+\ldots
$$

- κ_{i} is the $i^{\text {th }}$ cumulant.
- $K_{X+Y+Z}(t)=K_{t}(X)+K_{t}(Y)+K_{t}(Z)$ for independent X, Y, Z
- κ_{i} is a homogeneous polynomial of degree i
- $\kappa_{1}=E[X], \kappa_{2}=\operatorname{var}(X)$.
- The Gaussian is the only distribution whose all but first two cumulants are zero. In fact there is no distribution with all cumulants after $k>2$ equal to zero.

Hoeffding's Lemma: stronger version

- Consider $K_{X}^{\prime}(t)$ for X with $E X=0$ and $X \in[a, b]$

$$
\begin{aligned}
K^{\prime}(t) & =\frac{E[X \exp (t X)]}{E[\exp (t X)]} \\
K^{\prime \prime}(t) & =\frac{E\left[X^{2} \exp (t X)\right]}{E[\exp (t X)]}-\frac{E[X \exp (t X)] E[X \exp (t X)]}{E[\exp (t X)]^{2}}
\end{aligned}
$$

- $K^{\prime}(t)$ and $K^{\prime \prime}(t)$ are means and variances of a different random variable with probability density $\exp (t x) f(x) / E[\exp (t x)](f(x)$ being the density of X).
- So $K^{\prime \prime}(t) \leq(b-a)^{2} / 4$ for bounded X.

Hoeffding's Lemma: stronger version

- Now integrate once to get

$$
K^{\prime}(t)=\int_{y=0}^{t} K^{\prime \prime}(t) d t+K^{\prime}(0) \leq(b-a)^{2} / 4 t+K^{\prime}(0)
$$

- But we know that $K^{\prime}(0)=0$
- Integrate again to get

$$
K(t) \leq(b-a)^{2} t^{2} / 8+K(0)
$$

- But $K(0)=0$ as well.
- Now exponentiate on both sides.

Hoeffding's inequality

Theorem

Consider i.i.d $X_{i} \in\left[a_{i}, b_{i}\right]$. Let $X=\sum_{i} X_{i}$.

$$
P(X-E[X] \geq t) \leq e^{-\frac{2 t^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}}
$$

Proof.

$$
\begin{aligned}
P(X-E[X] \geq t) & \leq \inf _{\lambda \geq 0} e^{-\lambda t} E\left[e^{\lambda(X-E[X])}\right] \\
& \leq \inf _{\lambda \geq 0} e^{-\lambda t} \prod_{i} E\left[e^{\lambda\left(X_{i}-E\left[X_{i}\right]\right)}\right] \\
& \leq \inf _{\lambda \geq 0} e^{-\lambda t+\frac{\lambda^{2} \sum_{i}\left(b_{i}-a_{i}\right)^{2}}{8}}=e^{-\frac{2 t^{2}}{\sum_{i}\left(b_{i}-a_{i}\right)^{2}}}
\end{aligned}
$$

How do we use this?

Consider n fair coins $X_{i} \in\{0,1\}$. The Hoeffding inequality gives us

$$
P\left(\left|\sum_{i} x_{i}-n / 2\right| \geq t\right) \leq 2 e^{-2 t^{2} / n}
$$

- How to pick t ?
- Set the failure probability at δ.
- So $t=\sqrt{\frac{n}{2} \log (1 / \delta)}$, i.e. we can also write the bound as

$$
P\left(\left|\sum_{i} x_{i}-n / 2\right| \geq \sqrt{\frac{n}{2} \log (1 / \delta)}\right) \leq \delta
$$

Sub Gaussian random variables

Definition

X is sub-gaussian with parameter σ^{2} if, for all $\lambda \in \mathbb{R}$,

$$
\log M_{X-\mu}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}
$$

Sub Gaussian random variables

Definition

X is sub-gaussian with parameter σ^{2} if, for all $\lambda \in \mathbb{R}$,

$$
\log M_{X-\mu}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}
$$

- Gaussian random variables are also sub-gaussian.

Sub Gaussian random variables

Definition

X is sub-gaussian with parameter σ^{2} if, for all $\lambda \in \mathbb{R}$,

$$
\log M_{X-\mu}(\lambda) \leq \frac{\lambda^{2} \sigma^{2}}{2}
$$

- Gaussian random variables are also sub-gaussian.
- X is sub-gaussian iff $-X$ is also sub-gaussian

Moments of Sub-Gaussian random variables

Theorem

For $Z \sim N(0,1)$, for $p>1$,

$$
\left(E\left[|Z|^{p}\right]\right)^{1 / p}=O(\sqrt{p}) \quad \text { As } p \rightarrow \infty
$$

Sub-Gaussian random variables

- The following are equivalent. Let K_{i} be different constants which only differ from each other by absolute constant factors.

1. $P(|X| \geq t) \leq 2 \exp \left(-t^{2} / K_{1}^{2}\right)$ for all $t \geq 0$
2. $\left(E|X|^{p}\right)^{1 / p} \leq K_{2} \sqrt{p}$, for all $p \geq 1$
3. $E\left[\exp \left(\lambda^{2} X^{2}\right)\right] \leq \exp \left(K_{3}^{2} \lambda^{2}\right)$ for $|\lambda| \leq 1 / K_{3}$
4. The MGF of X^{2} is bounded at some point, i.e. $E \exp \left(X^{2} / K_{4}^{2}\right) \leq 2$
5. Moreover, if $E X=0$, the above are equivalent to:

$$
E[\exp (\lambda X)] \leq \exp \left(\lambda^{2} K_{5}^{2}\right), \forall \lambda \in \mathbb{R}
$$

Sub-gaussian r.v.'s - some properties

- Consider a R.V. X such that

$$
E[\exp (\lambda X)] \leq \exp \left(\lambda \mu+\lambda^{2} \sigma^{2} / 2\right)
$$

- $E[X]=\mu$
- $\operatorname{var}(X) \leq \sigma^{2}$
- If the smallest value of σ that satisfies the above equation is chosen, is it true that that will equal the variance?

Sub-Gaussian random variables

- Let X_{1}, X_{2} be independent sub-gaussian random variables with parameters σ_{1} and σ_{2}. Then $a X_{1}+b X_{2}$ is sub-gaussian with parameter $a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}$.

Sub-Gaussian random variables

- Let X_{1}, X_{2} be independent sub-gaussian random variables with parameters σ_{1} and σ_{2}. Then $a X_{1}+b X_{2}$ is sub-gaussian with parameter $a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}$.

$$
\begin{aligned}
M_{a\left(X_{1}-\mu_{1}\right)+b\left(X_{2}-\mu_{2}\right)}(\lambda) & =E\left[e^{\lambda\left(a\left(X_{1}-\mu_{1}\right)+b\left(X_{2}-\mu_{2}\right)\right)}\right] \\
& =E\left[e^{\lambda a\left(X_{1}-\mu_{1}\right)}\right] E\left[e^{\lambda b\left(X_{2}-\mu_{2}\right)}\right] \\
& \leq e^{\frac{\lambda^{2}\left(a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}\right)}{2}}
\end{aligned}
$$

