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Remember Markov’s inequality?

For X >0, E[X] < oo, t >0, we have:

P(Xzﬂg@

E[X] = E[X|X > t]P(X > t) + E[X|X < t]P(X < t)

—



Remember Markov’s inequality?

For X >0, E[X] < oo, t >0, we have:

P(Xzﬂg@

E[X] = E[X|X > t]P(X > t) + E[X|X < t]P(X < t)
> E[X|X > t]P(X > t)

—



Remember Markov’s inequality?

For X >0, E[X] < oo, t >0, we have:

P(Xzﬂg@

E[X] = E[X|X > t]P(X > t) + E[X|X < t]P(X < t)
> E[X|X > t]P(X > t)

_ EIX]
- t

> tP(X > t)

P(X > 1)

—



Higher order moments

Theorem (Chebyshev’s)
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Theorem (Higher order markov)
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Chernoff bounds

Theorem (Chernoff bound for Gaussians)

Let X; ~ N(u, 02) be independent random variables. Let X := ZX,-.
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Following in the same lines:
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e Let Z ~ N(0,1). We can show that for z > 0,

1 1 1 1 3
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where ¢(z) is the density of a standard normal.
. c 2 . c t2
e Since Xp ~ N(p,0/n), lim log P(Xn—p>t)/n= “5g2

e So the Chernoff bound is asymptotically tight, in the sense that it
gets the constant inside the exponent right.



Chernoff bound

Theorem (Chernoff bound for Bernoullis)

Let X; € {0,1} be independent random variables with E[X;] = p;. Let
X ::ZX,-,M::ZP,-. For0<d <1,
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Chernoff continued
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The last line follows from the fact that log(1 + x) > x/(1 + x/2) for x > 0



Hoeffding’s lemma

For a random variable X € [a, b] with E[X] = p and X € R,

A2(b—a)2
MX—;L(A) <e 8

e In comparison, for a Gaussian random variable X ~ N(u,o2)
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e For a bounded random variable X € [a, b], var(X) < (b — a)2/4 from
Popoviciu's inequality.
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Hoeffding’s lemma

For a random variable X € [a, b] with E[X] = p and X € R,

A2(b—a)2
MX—;L(A) <e 8

e In comparison, for a Gaussian random variable X ~ N(u,o2)
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e For a bounded random variable X € [a, b], var(X) < (b — a)2/4 from
Popoviciu's inequality.
e Recall that E[(X — t)°] is minimized at t = E[X].

e Sovar(X) < E[(X — (a+ b)/2)%] < @
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MGF of Rademacher variables

A Rademacher random variable € takes values in {—1,1} equiprobable.

e + e

2
)\2i
2 e

22
T L=0ifl
1

E[e)\G] —

2
N2/2



Hoeffding’s Lemma: weaker version

For a random variable X € [a, b] with E[X] = p and X € R,
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Hoeffding’s Lemma: weaker version

For a random variable X € [a, b] with E[X] = p and X € R,

22(b—a)?2
MX—H(A) <e 2

e Consider an iid copy X’ of X. Also consider a Radamacher random
variable e.
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Hoeffding’s Lemma: stronger version

e Cumulant generating function
X2 X3

Kx(t) = log E[exp(tX)] = k1x + K25 + K337 +...
e x; is the ith cumulant.
o Kxiyiz(t)=Ke(X)+ Ke(Y)+ Ke(Z) for independent X, Y, Z
e r; is a homogeneous polynomial of degree i
o k1 = E[X], kp = var(X).
e The Gaussian is the only distribution whose all but first two

cumulants are zero. In fact there is no distribution with all
cumulants after k > 2 equal to zero.
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Hoeffding’s Lemma: stronger version

e Consider K (t) for X with EX =0 and X € [a, b]

1, E[Xexp(tX)]
KO = Eep(]
K" (t) = E[X%exp(tX)]  E[X exp(tX)]E[X exp(tX)]
 Elexp(£X)] Efexp(tX)]2

e K'(t) and K”(t) are means and variances of a different random
variable with probability density exp(tx)f(x)/E[exp(tx)] (f(x) being
the density of X).

e So K"(t) < (b— a)?/4 for bounded X.

11



Hoeffding’s Lemma: stronger version

Now integrate once to get
! ! 1 / 2 /
K'(t) :/ K" (t)dt + K'(0) < (b — a)“ /4t + K'(0)
=0

But we know that K’(0) =0

Integrate again to get

K(t) < (b— a)°t?/8 + K(0)

But K(0) =0 as well.

e Now exponentiate on both sides.
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Hoeffding’s inequality

Consider i.i.d X; € [a;, b;]. Let X =) X;.
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How do we use this?

Consider n fair coins X; € {0,1}. The Hoeffding inequality gives us

P(SOX; — nf2] > 1) < 2e7 262/

1

e How to pick t?

e Set the failure probability at 4.

e Sot= glog(l/é), i.e. we can also write the bound as

{

> X;—n/2

> ’2’|og(1/5)) )
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Sub Gaussian random variables

X is sub-gaussian with parameter o2 if, for all A € R,
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Sub Gaussian random variables

X is sub-gaussian with parameter o2 if, for all A € R,
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e Gaussian random variables are also sub-gaussian.

e X is sub-gaussian iff —X is also sub-gaussian



Moments of Sub-Gaussian random variables

For Z ~ N(0,1), for p > 1,

(ENZIPDYP = 0(/p)  Asp— oo



Sub-Gaussian random variables

e The following are equivalent. Let K; be different constants which
only differ from each other by absolute constant factors.
1. P(|X| > t) < 2exp(—t*/K:) for all t >0
(E|X|P)P < Kay/p, for all p > 1
E[exp(A>X?)] < exp(K3)\?) for [\ < 1/K3
The MGF of X? is bounded at some point, i.e. Eexp(X>/K;) < 2
Moreover, if EX = 0, the above are equivalent to:
Elexp(AX)] < exp(N\’KZ), VA € R

o ke
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Sub-gaussian r.v.’s — some properties

e Consider a R.V. X such that
E[exp(AX)] < exp(Ap + )\202/2)
o E[X]=p
o var(X) < o’

e |If the smallest value of o that satisfies the above equation is chosen,
is it true that that will equal the variance?
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Sub-Gaussian random variables

e Let X7, Xy be independent sub-gaussian random variables with
parameters o1 and o5. Then aXj + bX5 is sub-gaussian with
parameter a2a% + bza%.
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Sub-Gaussian random variables

e Let X7, Xy be independent sub-gaussian random variables with
parameters o1 and o5. Then aXj + bX5 is sub-gaussian with
parameter a2a% + bza%.
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