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Remember Markov’s inequality?

Theorem

For X ≥ 0, E [X ] ≤ ∞, t > 0, we have:

P(X ≥ t) ≤ E [X ]

t

Use total expectation theorem.

E [X ] = E [X |X ≥ t]P(X ≥ t) + E [X |X < t]P(X < t)

≥ E [X |X ≥ t]P(X ≥ t)

≥ tP(X ≥ t)

P(X ≥ t) ≤ E [X ]

t
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Higher order moments

Theorem (Chebyshev’s)

For t > 0

P(|X − µ| ≥ t) = P((X − µ)2 ≥ t2) ≤ E [(X − µ)2]

t2
=

var(X )

t2

Theorem (Higher order markov)

For t > 0

P(|X − µ| ≥ t) = P(|X − µ|k ≥ tk ) ≤ E [|X − µ|k ]
tk
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Chernoff bounds

Theorem (Chernoff bound for Gaussians)

Let Xi ∼ N(µ, σ2) be independent random variables. Let X :=
∑
i

Xi .

P(X/n − µ ≥ t) ≤ e
− nt2

2σ2

Proof.

Following in the same lines:

P(X/n − µ ≥ t) inf
λ≥0

e−nλtE
[
eλ(X−nµ)

]
= inf

λ≥0
e−nλt

∏
i

E
[
eλ(Xi−µ)

]
(Since E [eλX ] = eλµ+σ2λ2/2) = inf

λ≥0
e−nλt+nσ2λ2/2

(Since λ = t/σ2 minimizes this) = e
− nt2

2σ2
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Is it tight?

• Let Z ∼ N(0, 1). We can show that for z > 0,

ϕ(z)

(
1

z
− 1

z3

)
≤ P(Z ≥ z) ≤ ϕ(z)

(
1

z
− 1

z3
+

3

z5

)
,

where ϕ(z) is the density of a standard normal.

• Since X̄n ∼ N(µ, σ2/n), lim
n→∞ logP(X̄n − µ ≥ t)/n = − t2

2σ2

• So the Chernoff bound is asymptotically tight, in the sense that it

gets the constant inside the exponent right.

4



Chernoff bound

Theorem (Chernoff bound for Bernoullis)

Let Xi ∈ {0, 1} be independent random variables with E [Xi ] = pi . Let

X :=
∑
i

Xi , µ :=
∑
i

pi . For 0 < δ < 1,

P(X ≥ µ(1 + δ)) ≤ e−δ2µ/3 P(X ≤ µ(1− δ)) ≤ e−δ2µ/2

Proof.

P(X ≥ µ(1 + δ)) = inf
λ≥0

P(eλX ≥ eλµ(1+δ)) ≤ inf
λ≥0

e−λµ(1+δ) E
[
eλX

]
︸ ︷︷ ︸
MGF of X
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Chernoff continued

inf
λ≥0

e−λµ(1+δ)E
[
eλX

]
= inf

λ≥0
e−λµ(1+δ)

∏
i

E
[
eλXi

]
= inf

λ≥0
e−λµ(1+δ)

∏
i

(eλpi + 1− pi )

(Since 1 + x ≤ ex for x ≥ 0) ≤ inf
λ≥0

e−λµ(1+δ)
∏
i

epi (e
λ−1)

= inf
λ≥0

e−λµ(1+δ)+µ(eλ−1)

(minimized at λ = log(1 + δ)) = eµ(δ−(1+δ) log(1+δ))

≤ e−µδ2/3

The last line follows from the fact that log(1 + x) ≥ x/(1 + x/2) for x > 0
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Hoeffding’s lemma

Theorem

For a random variable X ∈ [a, b] with E [X ] = µ and λ ∈ R,

MX−µ(λ) ≤ e
λ2(b−a)2

8

• In comparison, for a Gaussian random variable X ∼ N(µ, σ2),

MX−µ(λ) = e
λ2σ2
2

• For a bounded random variable X ∈ [a, b], var(X ) ≤ (b − a)2/4 from

Popoviciu’s inequality.

• Recall that E [(X − t)2] is minimized at t = E [X ].

• So var(X ) ≤ E [(X − (a+ b)/2)2] ≤ (b − a)2

4
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MGF of Rademacher variables

A Rademacher random variable ϵ takes values in {−1, 1} equiprobable.

E [eλϵ] =
eλ + e−λ

2

=
∑
i

λ2i

(2i)!

≤
∑
i

λ2i

2i i !

= eλ
2/2
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Hoeffding’s Lemma: weaker version

Theorem

For a random variable X ∈ [a, b] with E [X ] = µ and λ ∈ R,

MX−µ(λ) ≤ e
λ2(b−a)2

2

• Consider an iid copy X ′ of X . Also consider a Radamacher random

variable ϵ.

E [eλ(X−E [X ])] = E [e
λ(X−EX ′ [X ′])

] = EX [e
λEX ′ (X−X ′)

]

≤ EX ,X ′e
λ(X−X ′) = EX ,X ′Eϵe

ϵλ(X−X ′)

≤ EX ,X ′e
λ2(X−X ′)2

2 ≤ e
λ2(b−a)2

2
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Hoeffding’s Lemma: stronger version

• Cumulant generating function

KX (t) = log E [exp(tX )] = κ1x + κ2
x2

2
+ κ3

x3

3!
+ . . .

• κi is the ith cumulant.

• KX+Y+Z (t) = Kt(X ) + Kt(Y ) + Kt(Z) for independent X ,Y ,Z

• κi is a homogeneous polynomial of degree i

• κ1 = E [X ], κ2 = var(X ).

• The Gaussian is the only distribution whose all but first two

cumulants are zero. In fact there is no distribution with all

cumulants after k > 2 equal to zero.
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Hoeffding’s Lemma: stronger version

• Consider K ′
X (t) for X with EX = 0 and X ∈ [a, b]

K ′(t) =
E [X exp(tX )]

E [exp(tX )]

K ′′(t) =
E [X2 exp(tX )]

E [exp(tX )]
− E [X exp(tX )]E [X exp(tX )]

E [exp(tX )]2

• K ′(t) and K ′′(t) are means and variances of a different random

variable with probability density exp(tx)f (x)/E [exp(tx)] (f (x) being

the density of X ).

• So K ′′(t) ≤ (b − a)2/4 for bounded X .
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Hoeffding’s Lemma: stronger version

• Now integrate once to get

K ′(t) =
∫ t

y=0
K ′′(t)dt + K ′(0) ≤ (b − a)2/4t + K ′(0)

• But we know that K ′(0) = 0

• Integrate again to get

K(t) ≤ (b − a)2t2/8 + K(0)

• But K(0) = 0 as well.

• Now exponentiate on both sides.
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Hoeffding’s inequality

Theorem

Consider i.i.d Xi ∈ [ai , bi ]. Let X =
∑
i

Xi .

P(X − E [X ] ≥ t) ≤ e
− 2t2∑

i (bi−ai )
2

Proof.

P(X − E [X ] ≥ t) ≤ inf
λ≥0

e−λtE [eλ(X−E [X ])]

≤ inf
λ≥0

e−λt
∏
i

E
[
eλ(Xi−E [Xi ])

]

≤ inf
λ≥0

e
−λt+

λ2
∑

i (bi−ai )
2

8 = e
− 2t2∑

i (bi−ai )
2
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How do we use this?

Consider n fair coins Xi ∈ {0, 1}. The Hoeffding inequality gives us

P(|
∑
i

Xi − n/2| ≥ t) ≤ 2e−2t2/n

• How to pick t?

• Set the failure probability at δ.

• So t =

√
n

2
log(1/δ), i.e. we can also write the bound as

P

∣∣∣∣∣∣
∑
i

Xi − n/2

∣∣∣∣∣∣ ≥
√

n

2
log(1/δ)

 ≤ δ
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Sub Gaussian random variables

Definition

X is sub-gaussian with parameter σ2 if, for all λ ∈ R,

logMX−µ(λ) ≤
λ2σ2

2

• Gaussian random variables are also sub-gaussian.

• X is sub-gaussian iff −X is also sub-gaussian
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Moments of Sub-Gaussian random variables

Theorem

For Z ∼ N(0, 1), for p > 1,

(
E
[
|Z |p

])1/p
= O(

√
p) As p → ∞
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Sub-Gaussian random variables

• The following are equivalent. Let Ki be different constants which

only differ from each other by absolute constant factors.

1. P(|X | ≥ t) ≤ 2 exp(−t2/K 2
1 ) for all t ≥ 0

2. (E |X |p)1/p ≤ K2
√
p, for all p ≥ 1

3. E [exp(λ2X 2)] ≤ exp(K 2
3λ

2) for |λ| ≤ 1/K3

4. The MGF of X 2 is bounded at some point, i.e. E exp(X 2/K 2
4 ) ≤ 2

5. Moreover, if EX = 0, the above are equivalent to:

E [exp(λX )] ≤ exp(λ2K 2
5 ), ∀λ ∈ R
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Sub-gaussian r.v.’s – some properties

• Consider a R.V. X such that

E [exp(λX )] ≤ exp(λµ+ λ2σ2/2)

• E [X ] = µ

• var(X ) ≤ σ2

• If the smallest value of σ that satisfies the above equation is chosen,

is it true that that will equal the variance?
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Sub-Gaussian random variables

• Let X1, X2 be independent sub-gaussian random variables with

parameters σ1 and σ2. Then aX1 + bX2 is sub-gaussian with

parameter a2σ21 + b2σ22.

Ma(X1−µ1)+b(X2−µ2)
(λ) = E [eλ(a(X1−µ1)+b(X2−µ2))]

= E [eλa(X1−µ1)]E [eλb(X2−µ2)]

≤ e
λ2(a2σ21+b2σ22)

2
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