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Sub-Gaussian random variables

Theorem

For X1, . . . ,Xn independent sub-gaussian random variables with

sub-gaussian parameters σi and E [Xi ] = µi , for ∀t > 0,

P

∑
i

(Xi − µi ) ≥ t

 ≤ e

− t2

2
∑

i σ
2
i

• If Xi ∈ [a, b], E [Xi ] = 0, using Hoeffding’s lemma we have:

σ2i = (b − a)2/4.

• So, the above theorem immediately gives the original Hoeffding

inequality back.

P

∑
i

Xi ≥ t

 ≤ e
− 2t2

n(b−a)2
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Sub-exponential random variables

Definition

X is sub-exponential with parameters (ν, b) if, ∀|λ| < 1/b,

logMX−µ(λ) ≤
λ2ν2

2

Examples:

• Sub-Gaussian X with parameter σ is sub-exponential with

parameters (σ, b) ∀b > 0.

• How about the converse?
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Sub-exponential but not sub-gaussian

Example

Let Z ∼ N(0, 1) and consider the random variable X = Z2. For λ < 1/2,

we have:

E [eλ(X−1)] =
1√
2π

∫ ∞

−∞
eλ(z

2−1)e−z2/2dz

= e−λ 1√
2π

∫ ∞

−∞
e−z2(1−2λ)/2dz

=
e−λ

√
1− 2λ

≤ e2λ
2

∀|λ| < 1/4

• The MGF is only defined for λ < 1/2. So this is a sub-exponential

random variable with parameter (2, 4), but not a sub-gaussian

random variable.

• We use log(1 + x) ≥ x

2

2 + x

1 + x
for −1 ≤ x ≤ 0.
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Concentration

Theorem

Let X be a sub-exponential random variable with parameters (ν, b).

Then,

P(X ≥ µ+ t) ≤


e
− t2

2ν2 if 0 ≤ t ≤ ν2

b

e
− t
2b if t ≥ ν2

b

• For small t this is sub-gaussian in nature, whereas for large t the

exponent decays linearly with t.
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Proof

Proof.

P(X ≥ t) ≤ inf
λ≥0

e−λtE [eλX ]

≤ inf
λ≥0

exp

−λt + λ2ν2/2︸ ︷︷ ︸
f (λ)

 When 0 ≤ λ < 1/b

λ

f (λ)

t

ν2

− t2

2ν2

• If
t

ν2
≤ 1

b
,

inf
λ≥0

f (λ) = f (t/ν2) = − t2

2ν2

• If
t

ν2
>

1

b
, then f (λ) is minimized

at the boundary λ′ = 1/b.

f (λ′) = −t/b + ν2/2b2 ≤ − t

2b
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A moment condition

• It is typically difficult to check if a random variable is subexponential.

• We can also characterize a random variable by how quickly its

moments grow.

Definition

A random variable with mean µ and variance σ2 satisfies the Bernstein

condition with parameter b > 0, if |E [(X − µ)k ]| ≤ 1

2
k!σ2bk−2 for k ≥ 2.

• A bounded random variable with |X − µ| ≤ b satisfies the above.
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Bernstein’s condition and the sub-exponential property

Theorem

If X (E [X ] = µ, var(X ) = σ2) satisfies the Bernstein condition with

parameter b > 0, then X is sub-exponential with (
√
2σ, 2b).

Proof.

E [eλ(X−µ)] =
∞∑
k=0

λkE [(X − µ)k ]

k!

= 1 +
λ2σ2

2
+

∞∑
k=3

|λ|kσ2bk−2

2

≤ 1 +
λ2σ2

2

(
1 +

∞∑
k=1

(|λ|b)k
)

= 1 +
λ2σ2

2(1− |λ|b) For |λ| < 1/b

≤ e
λ2σ2

2(1−|λ|b) ≤ eλ
2σ2

= e
λ2(

√
2σ)2

2 For |λ| < 1/2b

7



Bernstein’s inequality

Theorem

If X with mean µ and variance σ2 satisfies the Bernstein condition with

parameter b > 0, then

P(|X − µ| ≥ t) ≤ 2e
− t2

2(σ2+bt) (1)

• Why not use Hoeffding?

• For small t, Bernstein gives us a subgaussian tail with parameter σ

• In contrast, Hoeffding always gives us a subgaussian tail with

parameter b ≥ σ.
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Bernstein’s inequality

Figure 1: Taken from the High dimensional prob. book by R. Vershynin.
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Bernstein’s inequality

Proof.

P(X − µ ≥ t) ≤ inf
λ∈[0,1/b)

e−λtMX−µ(λ)

= inf
λ∈[0,1/b)

e
−λt+

λ2σ2/2
1−bλ

≤ e
− t2

2(bt+σ2) Setting λ =
t

bt + σ2
∈ [0, 1/b)
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sub-exponential property

• The sub-exponential property is preserved under summation of

independent random variables.

• Consider Xk , k = 1, . . . , n independent sub-exponential (νk , bk )

random variables with E [Xk ] = µk .

•

E
[
eλ

∑
k (Xk−µk )

]
=

n∏
i=1

E
[
eλ(Xi−µi )

]

≤
n∏

i=1

e

λ2ν2
k

2 For |λ| ≤ 1/max
i

bi

• So
∑
k

(Xk − µk ) is sub-exponential with parameters (
√
nν∗, b∗).

b∗ = max
k

bk , and ν2∗ =
∑
i

ν2i /n (2)
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Concentration of sub-exponential mean

• Plugging into our previous tail bound we have:

P
(
X̄n − µ ≥ t

)
≤


e
− nt2

2ν2∗ for 0 ≤ t ≤ ν2∗
b∗

e
− nt
2b∗ for t >

ν2∗
b∗
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Application: the wonders of Johnson-Lindenstrauss embedding

• Given m data points ui , i = 1 : m in Rd , one wants to compute low

dimensional projections F (ui ), F : Rd → Rn with n << d .

• The goal is to preserve distances, so that distance-based algorithms

can work “almost as well” on the low dimensional space.

• We define “almost as well” by:

∥ui − uj∥
2(1− ϵ) ≤ ∥F (ui )− F (uj )∥

2 ≤ ∥ui − uj∥
2(1 + ϵ) (3)

• Construct a random matrix X ∈ Rn×d with Xij ∼ N(0, 1).

• Define F (u) as Xu/
√
n

Theorem

As long as m > 2, and ui ̸= uj ,∀i ̸= j and n = Ω(log(m/δ)/ϵ2), Equation

(3) is satisfied with probability at least 1− δ.

•
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We can do this easily with our tools

Proof.

• u′ = u/∥u∥. We will assume that u ̸= 0.

• Let Y :=
∥F (u)∥2

∥u∥2
=
∑
i

(Xu′)2i .

• But Yi := (Xu′)i =
∑
j

Xiju
′
j ∼ N(0, 1)

• Note that Y 2
i is sub-exponential with parameters (2, 4). So by the

summation property, Y is sub-exponential (2
√
n, 4).

• So P

(
|Y
n

− 1| ≥ t

)
≤ 2e

−nt2
8 for t ∈ (0, 1).

• P

(∣∣∣∣∣∥F (ui − uj )∥
2

∥ui − uj∥2
− 1

∣∣∣∣∣ ≥ ϵ For some ui ̸= uj

)
≤ 2

(
m

2

)
e
−nϵ2

8

• If m ≥ 2 and n >
16

ϵ2
log(m/δ), the above probability can be made as

small as δ.
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