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Sub-Gaussian random variables

Theorem

For Xi,...,Xn independent sub-gaussian random variables with
sub-gaussian parameters o; and E[X;] = p;, for Vt > 0,

+2

7 (Z(Xi — i) = t) <e 2Zi%

o If X; € [a, b], E[X;] =0, using Hoeffding's lemma we have:
o? = (b — a)?/a.

e So, the above theorem immediately gives the original Hoeffding
inequality back.

_2¢?
P (Z X > t) <e n(b-a)?
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Sub-exponential random variables

Definition
X is sub-exponential with parameters (v, b) if, V|\| < 1/b,

122
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log fou(k) <

Examples:

e Sub-Gaussian X with parameter o is sub-exponential with
parameters (o, b) Vb > 0.

e How about the converse?



Sub-exponential but not sub-gaussian

Example

Let Z ~ N(0,1) and consider the random variable X = 72, For A < 1/2,
we have:

e The MGF is only defined for A < 1/2. So this is a sub-exponential
random variable with parameter (2,4), but not a sub-gaussian

random variable.

o We use log(1+ x) > X2+ x
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for -1 < x <0.
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Concentration

Theorem

Let X be a sub-exponential random variable with parameters (v, b).

Then,
_tiz 2
2v ifo<t< —
PX>pu+t)<{© X =

e For small t this is sub-gaussian in nature, whereas for large t the
exponent decays linearly with t.



Proof.

P(X > t) < inf e ME[M]

A>0
< jnf exp [ At + A2 )2 When 0 < A < 1/b
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A moment condition

e It is typically difficult to check if a random variable is subexponential.
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e It is typically difficult to check if a random variable is subexponential.

e We can also characterize a random variable by how quickly its
moments grow.

Definition

A random variable with mean p and variance pe saicisfies the Bernstein
condition with parameter b > 0, if |E[(X — )¥]| < Ek!O'Zbk_2 for k > 2.
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A moment condition

e It is typically difficult to check if a random variable is subexponential.

e We can also characterize a random variable by how quickly its
moments grow.

Definition

A random variable with mean p and variance pe saitisfies the Bernstein
condition with parameter b > 0, if |E[(X — )¥]| < Ek!O'Zbk_2 for k > 2.

e A bounded random variable with |X — | < b satisfies the above.



Bernstein’s condition and the sub-exponential property

Theorem

If X (E[X] = u, var(X) = o) satisfies the Bernstein condition with
parameter b > 0, then X is sub-exponential with (v/2c,2b).

Proof.
) k k
Ax—p) _ N~ A EX = p)]
eie o) = 3 XA

)\20_2 0 |)\|k0'2bk_2
— il
+ 55—+ ;3 5

<1+ % <1 +§:(|Ab)k>

k=1
No?
=i == For [I\| < 1/b
+ 50 = [\B) or Al <1/
_2%2 2252 22(v20)
< eW-1NH < e —e 2 For |A\| < 1/2b



Bernstein’s inequality

Theorem

If X with mean . and variance o2 satisfies the Bernstein condition with
parameter b > 0, then

2
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e Why not use Hoeffding?
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Bernstein’s inequality

Theorem

If X with mean . and variance o2 satisfies the Bernstein condition with
parameter b > 0, then
2
P(X —ul > ) < 2e o™ +b1) (1)

e Why not use Hoeffding?
e For small t, Bernstein gives us a subgaussian tail with parameter o

e In contrast, Hoeffding always gives us a subgaussian tail with
parameter b > o.



Bernstein’s inequality

Large deviations Small deviations Large deviations
exponential tails normal tails exponential tails
—_—
0

Figure 2.3 Bernstein’s inequality for a sum of sub-exponential random
variables gives a mixture of two tails: sub-gaussian for small deviations and
sub-exponential for large deviations.

Figure 1: Taken from the High dimensional prob. book by R. Vershynin.



Bernstein’s inequality

Proof.

P(X—p>t)< inf e MMy _,())

A€[0,1/b)
2252 /2
= inf e_)\H_ 1-bA
A€[0,1/b)
2
<e 2btto?) Setting A= — = € [0,1/b
<e g bt 1 o2 [0,1/b)
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sub-exponential property

e The sub-exponential property is preserved under summation of
independent random variables.

e Consider X,k =1,...,n independent sub-exponential (v, by)
random variables with E[X,] = 1.

E eAEk(Xk—uk)] _ ﬁ E [eA(x,-—,L,)}

k
< H e 2 For || <1/ max b;

e So Z(Xk — py) is sub-exponential with parameters (v/nvx, bs).
k

bsx = m,bek’ and v2 = Zu,?/n (2)

1
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Concentration of sub-exponential mean

e Plugging into our previous tail bound we have:

nt2
X foro<t< vi
- e R
P(Xn—p>t) < T, b

— V.
e 2bx  fort> %
b«
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Application: the wonders of Johnson-Lindenstrauss embedding

e Given m data points u;,i=1:min RY one wants to compute low
dimensional projections F(u;), F : RY = R with n << d.

e The goal is to preserve distances, so that distance-based algorithms
can work “almost as well” on the low dimensional space.

13
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Application: the wonders of Johnson-Lindenstrauss embedding

Given m data points u;,i=1:min RY one wants to compute low
dimensional projections F(u;), F : R? — R" with n << d.

The goal is to preserve distances, so that distance-based algorithms

can work “almost as well” on the low dimensional space.

e We define “almost as well" by:
= wjlP(1 =€) < IF(u;) = Fup)® < llu; — ujlP(L+¢)  (3)

Construct a random matrix X € R"*9 with Xij ~ N(0,1).
Define F(u) as Xu/v/n

Theorem

As long as m > 2, and u; # u;,Vi #j and n = Q(Iog(m/é)/e2), Equation
(3) is satisfied with probability at least 1 — 6.
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We can do this easily with our tools

Proof.

o /' = u/|lul|. We will assume that u # 0.

Let Y := 7‘“:(“)”2 = Z(Xu/),g.

lull2

i

= (Xu); ZXUUJNNO 1)

[
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=
=
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Note that Y,- is sub—exponent|a| with parameters (2,4). So by the

summation property, Y is sub-exponential (2v/n, 4).
% _nt?
SoP(\;—l|2t>§2e 8 for t € (0,1).

n€2
m\ _ne
P< >6F0rsomeu,-7$uj><2<2>e 8

If m>2andn> l—g log(m/d), the above probability can be made as
€

IF (u; — )12

-1
lluj — uj]|?

small as J.



