SDS 384 11: Theoretical Statistics

Lecture 4: Sub-gaussian and sub-exponential random variables

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
www.cs.cmu.edu/~psarkar/teaching

Sub-Gaussian random variables

Theorem

For X_{1}, \ldots, X_{n} independent sub-gaussian random variables with sub-gaussian parameters σ_{i} and $E\left[X_{i}\right]=\mu_{i}$, for $\forall t>0$,

$$
P\left(\sum_{i}\left(X_{i}-\mu_{i}\right) \geq t\right) \leq e^{-\frac{t^{2}}{2 \sum_{i} \sigma_{i}^{2}}}
$$

- If $X_{i} \in[a, b], E\left[X_{i}\right]=0$, using Hoeffding's lemma we have: $\sigma_{i}^{2}=(b-a)^{2} / 4$.
- So, the above theorem immediately gives the original Hoeffding inequality back.

$$
P\left(\sum_{i} X_{i} \geq t\right) \leq e^{-\frac{2 t^{2}}{n(b-a)^{2}}}
$$

Sub-exponential random variables

Definition

X is sub-exponential with parameters (ν, b) if, $\forall|\lambda|<1 / b$,

$$
\log M_{X-\mu}(\lambda) \leq \frac{\lambda^{2} \nu^{2}}{2}
$$

Examples:

- Sub-Gaussian X with parameter σ is sub-exponential with parameters $(\sigma, b) \forall b>0$.
- How about the converse?

Sub-exponential but not sub-gaussian

Example

Let $Z \sim N(0,1)$ and consider the random variable $X=Z^{2}$. For $\lambda<1 / 2$, we have:

- The MGF is only defined for $\lambda<1 / 2$. So this is a sub-exponential random variable with parameter $(2,4)$, but not a sub-gaussian random variable.
- We use $\log (1+x) \geq \frac{x}{2} \frac{2+x}{1+x}$ for $-1 \leq x \leq 0$.

Sub-exponential but not sub-gaussian

Example

Let $Z \sim N(0,1)$ and consider the random variable $X=Z^{2}$. For $\lambda<1 / 2$, we have:

$$
\begin{aligned}
E\left[e^{\lambda(X-1)}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\lambda\left(z^{2}-1\right)} e^{-z^{2} / 2} d z \\
& =e^{-\lambda} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-z^{2}(1-2 \lambda) / 2} d z \\
& =\frac{e^{-\lambda}}{\sqrt{1-2 \lambda}} \\
& \leq e^{2 \lambda^{2}} \quad \forall|\lambda|<1 / 4
\end{aligned}
$$

- The MGF is only defined for $\lambda<1 / 2$. So this is a sub-exponential random variable with parameter $(2,4)$, but not a sub-gaussian random variable.
- We use $\log (1+x) \geq \frac{x}{2} \frac{2+x}{1+x}$ for $-1 \leq x \leq 0$.

Concentration

Theorem

Let X be a sub-exponential random variable with parameters (ν, b). Then,

$$
P(X \geq \mu+t) \leq \begin{cases}e^{-\frac{t^{2}}{2 \nu^{2}}} & \text { if } 0 \leq t \leq \frac{\nu^{2}}{b} \\ e^{-\frac{t}{2 b}} & \text { if } t \geq \frac{\nu^{2}}{b}\end{cases}
$$

- For small t this is sub-gaussian in nature, whereas for large t the exponent decays linearly with t.

Proof

Proof.

$$
\begin{aligned}
P(X \geq t) & \leq \inf _{\lambda \geq 0} e^{-\lambda t} E\left[e^{\lambda X}\right] \\
& \leq \inf _{\lambda \geq 0} \exp (\underbrace{-\lambda t+\lambda^{2} \nu^{2} / 2}_{f(\lambda)}) \quad \text { When } 0 \leq \lambda<1 / b
\end{aligned}
$$

- If $\frac{t}{\nu^{2}} \leq \frac{1}{b}$,

$$
\inf _{\lambda \geq 0} f(\lambda)=f\left(t / \nu^{2}\right)=-\frac{t^{2}}{2 \nu^{2}}
$$

- If $\frac{t}{\nu^{2}}>\frac{1}{b}$, then $f(\lambda)$ is minimized
at the boundary $\lambda^{\prime}=1 / b$.
$f\left(\lambda^{\prime}\right)=-t / b+\nu^{2} / 2 b^{2} \leq-\frac{t}{2 b}$

A moment condition

- It is typically difficult to check if a random variable is subexponential.

A moment condition

- It is typically difficult to check if a random variable is subexponential.
- We can also characterize a random variable by how quickly its moments grow.

Definition

A random variable with mean μ and variance σ^{2} satisfies the Bernstein condition with parameter $b>0$, if $\left|E\left[(X-\mu)^{k}\right]\right| \leq \frac{1}{2} k!\sigma^{2} b^{k-2}$ for $k \geq 2$.

A moment condition

- It is typically difficult to check if a random variable is subexponential.
- We can also characterize a random variable by how quickly its moments grow.

Definition

A random variable with mean μ and variance σ^{2} satisfies the Bernstein condition with parameter $b>0$, if $\left|E\left[(X-\mu)^{k}\right]\right| \leq \frac{1}{2} k!\sigma^{2} b^{k-2}$ for $k \geq 2$.

A moment condition

- It is typically difficult to check if a random variable is subexponential.
- We can also characterize a random variable by how quickly its moments grow.

Definition

A random variable with mean μ and variance σ^{2} satisfies the Bernstein condition with parameter $b>0$, if $\left|E\left[(X-\mu)^{k}\right]\right| \leq \frac{1}{2} k!\sigma^{2} b^{k-2}$ for $k \geq 2$.

- A bounded random variable with $|X-\mu| \leq b$ satisfies the above.

Bernstein's condition and the sub-exponential property

Theorem

If $X\left(E[X]=\mu, \operatorname{var}(X)=\sigma^{2}\right)$ satisfies the Bernstein condition with parameter $b>0$, then X is sub-exponential with $(\sqrt{2} \sigma, 2 b)$.

Proof.

$$
\begin{aligned}
E\left[e^{\lambda(X-\mu)}\right] & =\sum_{k=0}^{\infty} \frac{\lambda^{k} E\left[(X-\mu)^{k}\right]}{k!} \\
& =1+\frac{\lambda^{2} \sigma^{2}}{2}+\sum_{k=3}^{\infty} \frac{|\lambda|^{k} \sigma^{2} b^{k-2}}{2} \\
& \leq 1+\frac{\lambda^{2} \sigma^{2}}{2}\left(1+\sum_{k=1}^{\infty}(|\lambda| b)^{k}\right) \\
& =1+\frac{\lambda^{2} \sigma^{2}}{2(1-|\lambda| b)} \quad \text { For }|\lambda|<1 / b \\
& \leq e^{\frac{\lambda^{2} \sigma^{2}}{2(1-|\lambda| b)}} \leq e^{\lambda^{2} \sigma^{2}}=e^{\frac{\lambda^{2}(\sqrt{2} \sigma)^{2}}{2}} \quad \text { For }|\lambda|<1 / 2 b
\end{aligned}
$$

Bernstein's inequality

Theorem

If X with mean μ and variance σ^{2} satisfies the Bernstein condition with parameter $b>0$, then

$$
\begin{equation*}
P(|X-\mu| \geq t) \leq 2 e^{-\frac{t^{2}}{2\left(\sigma^{2}+b t\right)}} \tag{1}
\end{equation*}
$$

- Why not use Hoeffding?

Bernstein's inequality

Theorem

If X with mean μ and variance σ^{2} satisfies the Bernstein condition with parameter $b>0$, then

$$
\begin{equation*}
P(|X-\mu| \geq t) \leq 2 e^{-\frac{t^{2}}{2\left(\sigma^{2}+b t\right)}} \tag{1}
\end{equation*}
$$

- Why not use Hoeffding?
- For small t, Bernstein gives us a subgaussian tail with parameter σ

Bernstein's inequality

Theorem

If X with mean μ and variance σ^{2} satisfies the Bernstein condition with parameter $b>0$, then

$$
\begin{equation*}
P(|X-\mu| \geq t) \leq 2 e^{-\frac{t^{2}}{2\left(\sigma^{2}+b t\right)}} \tag{1}
\end{equation*}
$$

- Why not use Hoeffding?
- For small t, Bernstein gives us a subgaussian tail with parameter σ
- In contrast, Hoeffding always gives us a subgaussian tail with parameter $b \geq \sigma$.

Bernstein's inequality

Figure 2.3 Bernstein's inequality for a sum of sub-exponential random variables gives a mixture of two tails: sub-gaussian for small deviations and sub-exponential for large deviations.

Figure 1: Taken from the High dimensional prob. book by R. Vershynin.

Bernstein's inequality

Proof.

$$
\begin{aligned}
P(X-\mu \geq t) & \leq \inf _{\lambda \in[0,1 / b)} e^{-\lambda t} M_{X-\mu}(\lambda) \\
& =\inf _{\lambda \in[0,1 / b)} e^{-\lambda t+\frac{\lambda^{2} \sigma^{2} / 2}{1-b \lambda}} \\
& \leq e^{-\frac{t^{2}}{2\left(b t+\sigma^{2}\right)}} \quad \text { Setting } \lambda=\frac{t}{b t+\sigma^{2}} \in[0,1 / b)
\end{aligned}
$$

sub-exponential property

- The sub-exponential property is preserved under summation of independent random variables.
- Consider $X_{k}, k=1, \ldots, n$ independent sub-exponential $\left(\nu_{k}, b_{k}\right)$ random variables with $E\left[X_{k}\right]=\mu_{k}$.

$$
\begin{aligned}
E\left[e^{\lambda \sum_{k}\left(X_{k}-\mu_{k}\right)}\right] & =\prod_{i=1}^{n} E\left[e^{\lambda\left(X_{i}-\mu_{i}\right)}\right] \\
& \leq \prod_{i=1}^{n} e^{\frac{\lambda^{2} \nu_{k}^{2}}{2}} \quad \text { For }|\lambda| \leq 1 / \max _{i} b_{i}
\end{aligned}
$$

- So $\sum_{k}\left(X_{k}-\mu_{k}\right)$ is sub-exponential with parameters $\left(\sqrt{n} \nu_{*}, b_{*}\right)$.

$$
\begin{equation*}
b_{*}=\max _{k} b_{k}, \text { and } \nu_{*}^{2}=\sum_{i} \nu_{i}^{2} / n \tag{2}
\end{equation*}
$$

Concentration of sub-exponential mean

- Plugging into our previous tail bound we have:

$$
P\left(\bar{X}_{n}-\mu \geq t\right) \leq \begin{cases}e^{-\frac{n t^{2}}{2 \nu_{*}^{2}}} & \text { for } 0 \leq t \leq \frac{\nu_{*}^{2}}{b_{*}} \\ e^{-\frac{n t}{2 b_{*}}} & \text { for } t>\frac{\nu_{*}^{2}}{b_{*}}\end{cases}
$$

Application: the wonders of Johnson-Lindenstrauss embedding

- Given m data points $u_{i}, i=1: m$ in \mathbb{R}^{d}, one wants to compute low dimensional projections $F\left(u_{i}\right), F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ with $n \ll d$.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.

Application: the wonders of Johnson-Lindenstrauss embedding

- Given m data points $u_{i}, i=1: m$ in \mathbb{R}^{d}, one wants to compute low dimensional projections $F\left(u_{i}\right), F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ with $n \ll d$.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.
- We define "almost as well" by:

$$
\begin{equation*}
\left\|u_{i}-u_{j}\right\|^{2}(1-\epsilon) \leq\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\|^{2} \leq\left\|u_{i}-u_{j}\right\|^{2}(1+\epsilon) \tag{3}
\end{equation*}
$$

Application: the wonders of Johnson-Lindenstrauss embedding

- Given m data points $u_{i}, i=1: m$ in \mathbb{R}^{d}, one wants to compute low dimensional projections $F\left(u_{i}\right), F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ with $n \ll d$.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.
- We define "almost as well" by:

$$
\begin{equation*}
\left\|u_{i}-u_{j}\right\|^{2}(1-\epsilon) \leq\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\|^{2} \leq\left\|u_{i}-u_{j}\right\|^{2}(1+\epsilon) \tag{3}
\end{equation*}
$$

- Construct a random matrix $X \in \mathbb{R}^{n \times d}$ with $X_{i j} \sim N(0,1)$.

Application: the wonders of Johnson-Lindenstrauss embedding

- Given m data points $u_{i}, i=1: m$ in \mathbb{R}^{d}, one wants to compute low dimensional projections $F\left(u_{i}\right), F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ with $n \ll d$.
- The goal is to preserve distances, so that distance-based algorithms can work "almost as well" on the low dimensional space.
- We define "almost as well" by:

$$
\begin{equation*}
\left\|u_{i}-u_{j}\right\|^{2}(1-\epsilon) \leq\left\|F\left(u_{i}\right)-F\left(u_{j}\right)\right\|^{2} \leq\left\|u_{i}-u_{j}\right\|^{2}(1+\epsilon) \tag{3}
\end{equation*}
$$

- Construct a random matrix $X \in \mathbb{R}^{n \times d}$ with $X_{i j} \sim N(0,1)$.
- Define $F(u)$ as $X u / \sqrt{n}$

Theorem

As long as $m>2$, and $u_{i} \neq u_{j}, \forall i \neq j$ and $n=\Omega\left(\log (m / \delta) / \epsilon^{2}\right)$, Equation (3) is satisfied with probability at least $1-\delta$.

We can do this easily with our tools

Proof.

- $u^{\prime}=u /\|u\|$. We will assume that $u \neq 0$.
- Let $Y:=\frac{\|F(u)\|^{2}}{\|u\|^{2}}=\sum_{i}\left(X u^{\prime}\right)_{i}^{2}$.
- But $Y_{i}:=\left(X u^{\prime}\right)_{i}=\sum_{j} X_{i j} u_{j}^{\prime} \sim N(0,1)$
- Note that Y_{i}^{2} is sub-exponential with parameters $(2,4)$. So by the summation property, Y is sub-exponential $(2 \sqrt{n}, 4)$.
- So $P\left(\left|\frac{Y}{n}-1\right| \geq t\right) \leq 2 e^{-\frac{n t^{2}}{8}}$ for $t \in(0,1)$.
- $P\left(\left|\frac{\left\|F\left(u_{i}-u_{j}\right)\right\|^{2}}{\left\|u_{i}-u_{j}\right\|^{2}}-1\right| \geq \epsilon\right.$ For some $\left.u_{i} \neq u_{j}\right) \leq 2\binom{m}{2} e^{-\frac{n \epsilon^{2}}{8}}$
- If $m \geq 2$ and $n>\frac{16}{\epsilon^{2}} \log (m / \delta)$, the above probability can be made as small as δ.

