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A bit background

• So far we have looked at sums of random variables. What if want to

study properties of functions of independent random variables?

• Consider n independent random variables X = (X1, . . .Xn).

• We want to bound f (X1, . . . ,Xn)− E [f (X1, . . . ,Xn)]

• Define Yk = E [f (X )|X1, . . . ,Xk ] for k ∈ {1, . . . , n − 1}

• Y0 = E [f (X )] and Yn = f (X )

• Now f (X )− E [f (X )] =
n−1∑
i=0

(Yi+1 − Yi )︸ ︷︷ ︸
Di

• This forms a Martingale difference sequence.
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Martingales

Definition

A sequence of random variables {Yi} adapted to a filtration Fi is a

martingale if, for all i ,

E |Yi | < ∞ E [Yi+1|Fi ] = Yi

• A filtration {Fi} is a sequence of nested σ− fields, i.e. Fi ⊆ Fi+1.

• Yi is adapted to Fi means that each Yi is measurable w.r.t Fi .

• If Fi = σ(X1, . . . ,Xi ), then we say that {Yi} forms a martingale

sequence w.r.t {Xi}.

• If Fi = σ(Y1, . . . ,Yi ), then we say that {Yi} forms a martingale

sequence.

2



Martingales

Definition

A sequence of random variables {Yi} adapted to a filtration Fi is a

martingale if, for all i ,

E |Yi | < ∞ E [Yi+1|Fi ] = Yi

• A filtration {Fi} is a sequence of nested σ− fields, i.e. Fi ⊆ Fi+1.

• Yi is adapted to Fi means that each Yi is measurable w.r.t Fi .

• If Fi = σ(X1, . . . ,Xi ), then we say that {Yi} forms a martingale

sequence w.r.t {Xi}.

• If Fi = σ(Y1, . . . ,Yi ), then we say that {Yi} forms a martingale

sequence.

2



Martingales

Definition

A sequence of random variables {Yi} adapted to a filtration Fi is a

martingale if, for all i ,

E |Yi | < ∞ E [Yi+1|Fi ] = Yi

• A filtration {Fi} is a sequence of nested σ− fields, i.e. Fi ⊆ Fi+1.

• Yi is adapted to Fi means that each Yi is measurable w.r.t Fi .

• If Fi = σ(X1, . . . ,Xi ), then we say that {Yi} forms a martingale

sequence w.r.t {Xi}.

• If Fi = σ(Y1, . . . ,Yi ), then we say that {Yi} forms a martingale

sequence.

2



Martingales

Definition

A sequence of random variables {Yi} adapted to a filtration Fi is a

martingale if, for all i ,

E |Yi | < ∞ E [Yi+1|Fi ] = Yi

• A filtration {Fi} is a sequence of nested σ− fields, i.e. Fi ⊆ Fi+1.

• Yi is adapted to Fi means that each Yi is measurable w.r.t Fi .

• If Fi = σ(X1, . . . ,Xi ), then we say that {Yi} forms a martingale

sequence w.r.t {Xi}.

• If Fi = σ(Y1, . . . ,Yi ), then we say that {Yi} forms a martingale

sequence.

2



Working through the filtration stuff

Definition

A σ algebra (or field) (Σ) is a collection of subsets of Ω that is closed

under complement and countable unions. The pair (Ω,Σ) is called a

measurable space. The smallest possible σ algebra on Ω is {ϕ,Ω}, the
biggest is the power set P(Ω).

• A random variable X : Ω → S is called a measurable map from (Ω,Σ)

to (S ,S), if
• Define X−1(B) = {ω : X (ω) ∈ B}
• For all B ∈ S, X−1(B) ∈ F
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Working through the filtration stuff

Figure 1: Courtesy: “https://rinterested.github.io/”
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Working through the filtration stuff

• I am interested in two coin tosses, where Xi = 1({ithtoss is a head}).

• Ω = {(H,H), . . . , (T ,T )}

• When t = 0, we have not observed anything so F0 = {ϕ,Ω}

• Then F1 = {ϕ,Ω, {(H,H), (H,T )}, {(T ,H), (T ,T )}} (has 4 elements)

• F2 = P(Ω) has 16 elements.

• S = R and S is Borel sets, the smallest σ−algebra containing the

open intervals on R.

• Is X1 measurable w.r.t F1?
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Working through the filtration stuff

• Is X1 measurable w.r.t F1?

• Yes, because X1 can take value 1 or 0.

• For example, X−1
1 ((a, b)) = {(T ,H), (T ,T )} with a < 0 and

b ∈ (0, 1) and this is in F1

• X−1
1 ((a, b)) = {(H,H), (H,T )} with a < 1 and b > 1 and this is in

F1

• X−1
1 ((a, b)) = Ω with a < 0 and b > 1 and this is in F1

• But X−1
2 ((−0.1, 0.1)) = {(T ,T ), (H,T )}, this is not in F1, so X2 is

not measurable.

6



Example-partial sums of i.i.d sequences

Example

Let {Xi}
∞
i=1 be a sequence of i.i.d random variables with E [X1] = µ.

E [|X1 − µ|] is bounded. Let Fi = σ(X1, . . . ,Xi ). Then

{Yi =
i∑

k=1

Xk − iµ} is a martingale sequence w.r.t {Xi}.

• Yi is measurable w.r.t Fi .

• Finally,

E [Yi+1|Fi ] = E [Xi+1 +
i∑

k=1

Xk − (i + 1)µ|Fi ]

= µ+
i∑

k=1

Xk − (i + 1)µ = Yi
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Doob construction

Example

Let {Xi}
∞
i=1 be a sequence of random variables. Let

Yi = E [f (X )|X1, . . . ,Xi ] and assume that E [|f (X )|] < ∞. Then {Yi}
n
i=0

is a martingale sequence w.r.t {Xi}
n
i=1.

• E [|Yi |] = E [|E [f (X )|X1, . . . ,Xi ]|] ≤ E [|f (X )|] < ∞. (Use Jensen on

|(.)|)

• Furthermore,

E [Yi+1|X1, . . . ,Xi ] = E [E [f (X )|X1, . . . ,Xi+1]|X1, . . . ,Xi ]

= E [f (X )|X1, . . . ,Xi ] = Yi The tower property
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Doob construction - examples

Example

We are throwing m balls into n bins. At step i we place ball i into a bin

chosen uniformly at random. Call the index of the bin Xi . Let Z denote

the number of empty bins. E [Z |X1, . . .Xi ] is a martingale.

• Whats the big deal, just write Yi = 1(Bin i is empty)

• Z =
∑
i

Yi , and so I can compute expectation easily.

• Can we use traditional concentration arguments to say Z − EZ is

small?
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Doob construction - examples

Example

Consider a random graph G(n, p) where the edge between i , j is added

with probability p, independent of any other edges. We are interested in

the Chromatic number of this graph (χ), i.e. the minimum number of

colors to “properly” color this graph, i.e. no two nodes connected by an

edge should have the same color.

• Let the vertices be labeled as 1, . . . , n

• Let Gi denote the graph induced by nodes 1, . . . i .

• Set E [χ|Gi ] is a martingale.

• This is also called a vertex exposure filtration.

• See “Sharp concentration of the chromatic number on random

graphs Gn,p” by Shamir and Spencer
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Likelihood ratio

Example

Let f , g be two densities such that g is absolutely continuous w.r.t f .

Suppose {Xi}
∞
i=1

iid∼ f and Yn is the likelihood ratio
n∏

i=1

g(Xi )

f (Xi )
for the

first n datapoints. Then {Yn} forms a Martingale sequence w.r.t {Xn}.

• First recall that E [|Yn|] = E [Yn] = 1

•

E [Yn+1|X1, . . . ,Xn] = E

n+1∏
i=1

g(Xi )

f (Xi )

∣∣∣∣∣∣X1, . . . ,Xn


=

n∏
i=1

g(Xi )

f (Xi )
E

[
g(Xn+1)

f (Xn+1)

]
= Yn
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Martingale Difference Sequence

Definition

A sequence {Di} of random variables adapted to a filtration {Fi} is a

Martingale Difference Sequence if,

E [|Di |] < ∞ E [Di+1|Fi ] = 0

• Let {Yi} be a martingale sequence.

• Then Di+1 = Yi+1 − Yi define a Martingale Difference Sequence.

• E [Di+1|Fi ] = E [Yi+1|Fi ]− E [Yi |Fi ] = Yi − Yi = 0.

• E [Yi+1|Fi ] = Yi because of the martingale property,

• E [Yi |Fi ] = Yi since Yi is measurable w.r.t the filtration Fi .
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Concentration inequalities

Theorem

Consider a Martingale sequence {Di} (adapted to a filtration {Fi}) that

satisfies E [eλDi |Fi−1] ≤ e
λ2ν2

i
/2

a.s. for any |λ| < 1/bi .

• The sum
∑
i

Di is sub-exponential with parameters (

√∑
k

ν2k , b∗)

where b∗ := max
i

bi .

• Hence for all t ≥ 0,

P

| n∑
i=1

Di | ≥ t

 ≤


2e

− t2

2
∑

k ν2
k If 0 ≤ t ≤

∑
k ν2k
b∗

2e
− t
2b∗ If t >

∑
k ν2k
b∗

13



Proof

Proof.

Let X :=
n∑

i=1

Di .

E [eλ
∑

i Di ] = E [E [eλ
∑

i Di |Fn−1]] = E [e
λ
∑n−1

i=1
Di E [eλDn |Fn−1]]

≤ E [e
λ
∑n−1

i=1
Di ]eλ

2ν2n/2 If |λ| < 1/bn

≤ E [e
λ
∑n−2

i=1
Di ]e

λ2(ν2n−1+ν2n)/2 If |λ| < 1/bn, 1/bn−1

≤ e
∑

i λ
2ν2

i
/2

If |λ| < min
i

1/bi

Using our previous theorem on sub-exponential random variables, the

result is proven in one direction. The other direction is identical leading

to the factor of 2.
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Azuma-Hoeffding

Corollary (Azuma-Hoeffding)

Let {Dk} be a Martingale Difference Sequence adapted to the filtration

{Fk} and suppose |Dk | ≤ bk a.s. for all k ≥ 1. Then ∀t ≥ 0,

P

| n∑
k=1

Dk | ≥ t

 ≤ 2e

− t2

2
∑

k b2
k

Proof.

• We can rework the last proof. We need |E [eλDn |Fn−1]|.

• This is bounded by eλ
2b2n/2, since Dn is mean zero sub-gaussian

with σ = bn.
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McDiarmid’s inequality

Theorem

Let f : X n → R satisfy the following bounded difference condition

∀x1, . . . , xn, x
′
i ∈ X :

|f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)| ≤ Bi ,

then, P(|f (X )− E [f (X )]| ≥ t) ≤ 2 exp

(
− 2t2∑

i B
2
i

)

• Note that this boils down to Hoeffding’s when f is the sum of

bounded random variables.

16



Proof

Proof.

• Define Yi = E [f (X )|Fi ] and Di = Yi − Yi−1.

• Since {Yi} is a Martingale sequence w.r.t {Xi}, {Di} is a Martingale

difference sequence.

• We have:

Di = E [f (X )|Fi ]− E [f (X )|Fi−1]

= E [f (X )|X1, . . . ,Xi ]− E [f (X )|X1, . . . ,Xi−1]

≤ sup
x
(E [f (X )|X1, . . . , x ]− E [f (X )|X1, . . . ,Xi−1]) =: Ui

Di ≥ inf
x
(E [f (X )|X1, . . . , x ]− E [f (X )|X1, . . . ,Xi−1]) =: Li

Ui − Li ≤ Bi

17



Proof

Proof.

• Define Yi = E [f (X )|Fi ] and Di = Yi − Yi−1.

• Since {Yi} is a Martingale sequence w.r.t {Xi}, {Di} is a Martingale

difference sequence.

• We have:

Di = E [f (X )|Fi ]− E [f (X )|Fi−1]

= E [f (X )|X1, . . . ,Xi ]− E [f (X )|X1, . . . ,Xi−1]

≤ sup
x
(E [f (X )|X1, . . . , x ]− E [f (X )|X1, . . . ,Xi−1]) =: Ui

Di ≥ inf
x
(E [f (X )|X1, . . . , x ]− E [f (X )|X1, . . . ,Xi−1]) =: Li

Ui − Li ≤ Bi

17



Proof

Proof.

• Define Yi = E [f (X )|Fi ] and Di = Yi − Yi−1.

• Since {Yi} is a Martingale sequence w.r.t {Xi}, {Di} is a Martingale

difference sequence.

• We have:

Di = E [f (X )|Fi ]− E [f (X )|Fi−1]

= E [f (X )|X1, . . . ,Xi ]− E [f (X )|X1, . . . ,Xi−1]

≤ sup
x
(E [f (X )|X1, . . . , x ]− E [f (X )|X1, . . . ,Xi−1]) =: Ui

Di ≥ inf
x
(E [f (X )|X1, . . . , x ]− E [f (X )|X1, . . . ,Xi−1]) =: Li

Ui − Li ≤ Bi

17



Proof

Proof.

• We also have:

Ui − Li ≤ Bi

• How?

Ui − Li = sup
x

E [f (X )|X1, . . . , x ]− inf
y
E [f (X )|X1, . . . , y ]

= sup
x,y

(E [f (X )|X1, . . . , x ]− E [f (X )|X1, . . . , y ])

= sup
x,y

∫
(f (x1:i−1, x ,Xi+1:n)− f (x1:i−1, y ,Xi+1:n))dP(Xi+1:n)

≤ sup
x,y

∫
|f (x1:i−1, x ,Xi+1:n)− f (x1:i−1, y ,Xi+1:n)|dP(Xi+1:n)

≤ Bi

• Now apply Azuma-Hoeffding.

• So, where is independence being used?
18



Example: Mean absolute deviation

Example

Consider an i.i.d random variable sequence {Xk}
∞
k=1 with |Xk | ≤ b.

Define the mean absolute deviation:

U =
1(n
2

) ∑
j<k

|Xj − Xk |

As we will see later, the above is a type of a pairwise U-Statistics. We

want to bound |U − E [U]|.

• Note that the summands are not independent.

• Also note that ||Xi − Xj | − |Xi − X ′
j || ≤ |Xj − X ′

j | ≤ 2b

• So |U(x1, . . . , xi , . . . , xn)− U(x1, . . . , x
′
i , . . . ,Xn)| ≤

(n − 1)2b(n
2

) =
4b

n

• Use McDiarmid’s inequality, P(|U − E [U]| ≥ t) ≤ 2 exp

(
−nt2

8b2

)
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Example: Mean absolute deviation

Example
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Example: Number of triangles in an Erdos Renyi graph

Example

Consider an Erdős Rényi (ER(p)) random graph. What can we say

about the number of triangles ∆?

• Let n be the number of nodes. m =

(
n

2

)
be the number of ordered

pairs. Call this set E .

• An ER(p) graph chooses the edges randomly as iid Bernoulli r.v.s

{Xe : e ∈ E} with P(Xe = 1) = p.

• Let T ⊂ E3 be the set of 3-tuples of node pairs which can form a

triangle. e.g. {(i , j), (j , k), (k, i)} ∈ T . |T | =

(
n

3

)
.

• We have f (X ) =
∑

{e1,e2,e3}∈T
Xe1Xe2Xe3 .
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Example: Number of triangles in an Erdos Renyi graph–Cont.

Example

Consider an Erdős Rényi (ER(p)) random graph. What can we say

about the number of triangles ∆?

• If I switch Xe = 1 to 0 how much can f (X ) change?

• It changes by all triangles incident on that edge. The maximum

number of such triangles is n − 2. So L = n − 2.

• Hence P(|f (X )− E [f (X )]| ≥ t) ≤ 2e
− 2t2

m(n−2)2

• E [f (X )] =

(
n

3

)
p3. If we set t = Θ(n2 log n), then the error

probability goes to zero.

• But in order for this to give concentration we need, t/n3p3 → 0, i.e.

np >> n2/3
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Example: Number of triangles in an Erdos Renyi graph–Cont.

Example

Consider an Erdős Rényi (ER(p)) random graph. What can we say

about the number of triangles ∆?

• One can however use Chen-Stein method to show that f (X ) is

approximately Poisson

((
n

3

)
p3
)
.

• So the above should hold as long as np → ∞. But McDiarmid

requires a much stronger condition!

• What if we could plug in the expected value of the Lipschitz

constant, i.e. np2?

• Then the exponent would be e−2t2/n4p4 . Taking t = n2p2, we see

that concentration would amount to having np >> log n which

matches with the Poisson limit argument.
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Example: Number of triangles in an Erdos Renyi graph–Cont.

Example

Consider a random graph G(n, p) where the edge between i , j is added

with probability p, independent of any other edges. We are interested in

the Chromatic number of this graph (χ), i.e. the minimum number of

colors to “properly” color this graph, i.e. no two nodes connected by an

edge should have the same color.

• We need independent RVs Z1, . . . ,Zi so that we can construct a

Doob martingale E [χ|Z1, . . . ,Zi ] and apply McDiarmid’s inequality.

• Let Zi be the edges from node i to nodes 1, . . . , i − 1.

• χ cannot decrease by more than 1, because if the graph with node i

can be colored by k − 1 colors, then the graph without node i can be

colored using ≤ k − 1 colors.

• Similarly, it can’t increase by more than 1, because you can just

color node i with a new color, thereby increasing the chromatic

number by 1.
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Lipschitz functions of Gaussian random variables

Definition

A function f : Rn → R is L−Lipschitz w.r.t the Euclidean norm if

|f (x)− f (y)| ≤ L∥x − y∥2 ∀x , y ∈ Rn

Theorem

Let (X1, . . . ,Xn) be a vector of iid N(0, 1) random variables. Let

f : Rn → R be L−Lipschitz w.r.t the Euclidean norm. Then

f (X )− E [f (X )] is sub-gaussian with parameter at most L, i.e. ∀t ≥ 0,

P (|f (X )− E [f (X )]| ≥ t) ≤ e
− t2

2L2

• A L Lipschitz function of a vector of i.i.d N(0, 1) random variables

concentrate like a N(0, L2) random variable, irrespective of how long

the vector is.
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