

# SDS 384 11: Theoretical Statistics

# Lecture 5: Martingale inequalities

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin • So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables  $X = (X_1, \dots, X_n)$ .

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables  $X = (X_1, \ldots, X_n)$ .
- We want to bound  $f(X_1, \ldots, X_n) E[f(X_1, \ldots, X_n)]$

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables  $X = (X_1, \ldots, X_n)$ .
- We want to bound  $f(X_1, \ldots, X_n) E[f(X_1, \ldots, X_n)]$
- Define  $Y_k = E[f(X)|X_1, \dots, X_k]$  for  $k \in \{1, \dots, n-1\}$

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables  $X = (X_1, \ldots, X_n)$ .
- We want to bound  $f(X_1, \ldots, X_n) E[f(X_1, \ldots, X_n)]$
- Define  $Y_k = E[f(X)|X_1, \dots, X_k]$  for  $k \in \{1, \dots, n-1\}$

• 
$$Y_0 = E[f(X)]$$
 and  $Y_n = f(X)$ 

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables  $X = (X_1, \ldots, X_n)$ .
- We want to bound  $f(X_1, \ldots, X_n) E[f(X_1, \ldots, X_n)]$
- Define  $Y_k = E[f(X)|X_1, \dots, X_k]$  for  $k \in \{1, \dots, n-1\}$

• 
$$Y_0 = E[f(X)]$$
 and  $Y_n = f(X)$   
• Now  $f(X) - E[f(X)] = \sum_{i=0}^{n-1} \underbrace{(Y_{i+1} - Y_i)}_{D_i}$ 

- So far we have looked at sums of random variables. What if want to study properties of functions of independent random variables?
- Consider *n* independent random variables  $X = (X_1, \ldots, X_n)$ .
- We want to bound  $f(X_1, \ldots, X_n) E[f(X_1, \ldots, X_n)]$
- Define  $Y_k = E[f(X)|X_1, \dots, X_k]$  for  $k \in \{1, \dots, n-1\}$

• 
$$Y_0 = E[f(X)]$$
 and  $Y_n = f(X)$ 

• Now 
$$f(X) - E[f(X)] = \sum_{i=0}^{n-1} \underbrace{(Y_{i+1} - Y_i)}_{D_i}$$

• This forms a Martingale difference sequence.

A sequence of random variables  $\{Y_i\}$  adapted to a filtration  $\mathcal{F}_i$  is a martingale if, for all *i*,

 $E|Y_i| < \infty$   $E[Y_{i+1}|\mathcal{F}_i] = Y_i$ 

• A filtration  $\{\mathcal{F}_i\}$  is a sequence of nested  $\sigma$ - fields, i.e.  $\mathcal{F}_i \subseteq \mathcal{F}_{i+1}$ .

A sequence of random variables  $\{Y_i\}$  adapted to a filtration  $\mathcal{F}_i$  is a martingale if, for all *i*,

$$E|Y_i| < \infty$$
  $E[Y_{i+1}|\mathcal{F}_i] = Y_i$ 

- A filtration  $\{\mathcal{F}_i\}$  is a sequence of nested  $\sigma$ -fields, i.e.  $\mathcal{F}_i \subseteq \mathcal{F}_{i+1}$ .
- $Y_i$  is adapted to  $\mathcal{F}_i$  means that each  $Y_i$  is measurable w.r.t  $\mathcal{F}_i$ .

A sequence of random variables  $\{Y_i\}$  adapted to a filtration  $\mathcal{F}_i$  is a martingale if, for all *i*,

$$E|Y_i| < \infty$$
  $E[Y_{i+1}|\mathcal{F}_i] = Y_i$ 

- A filtration  $\{\mathcal{F}_i\}$  is a sequence of nested  $\sigma$ -fields, i.e.  $\mathcal{F}_i \subseteq \mathcal{F}_{i+1}$ .
- $Y_i$  is adapted to  $\mathcal{F}_i$  means that each  $Y_i$  is measurable w.r.t  $\mathcal{F}_i$ .
- If F<sub>i</sub> = σ(X<sub>1</sub>,...,X<sub>i</sub>), then we say that {Y<sub>i</sub>} forms a martingale sequence w.r.t {X<sub>i</sub>}.

A sequence of random variables  $\{Y_i\}$  adapted to a filtration  $\mathcal{F}_i$  is a martingale if, for all *i*,

$$E|Y_i| < \infty$$
  $E[Y_{i+1}|\mathcal{F}_i] = Y_i$ 

- A filtration  $\{\mathcal{F}_i\}$  is a sequence of nested  $\sigma$ -fields, i.e.  $\mathcal{F}_i \subseteq \mathcal{F}_{i+1}$ .
- $Y_i$  is adapted to  $\mathcal{F}_i$  means that each  $Y_i$  is measurable w.r.t  $\mathcal{F}_i$ .
- If F<sub>i</sub> = σ(X<sub>1</sub>,...,X<sub>i</sub>), then we say that {Y<sub>i</sub>} forms a martingale sequence w.r.t {X<sub>i</sub>}.
- If F<sub>i</sub> = σ(Y<sub>1</sub>,..., Y<sub>i</sub>), then we say that {Y<sub>i</sub>} forms a martingale sequence.

A  $\sigma$  algebra (or field) ( $\Sigma$ ) is a collection of subsets of  $\Omega$  that is closed under complement and countable unions. The pair ( $\Omega, \Sigma$ ) is called a measurable space. The smallest possible  $\sigma$  algebra on  $\Omega$  is { $\phi, \Omega$ }, the biggest is the power set  $\mathcal{P}(\Omega)$ .

- A random variable X : Ω → S is called a measurable map from (Ω, Σ) to (S, S), if
  - Define  $X^{-1}(B) = \{\omega : X(\omega) \in B\}$
  - For all  $B \in \mathcal{S}$ ,  $X^{-1}(B) \in \mathcal{F}$

# Working through the filtration stuff



Figure 1: Courtesy: "https://rinterested.github.io/"

- I am interested in two coin tosses, where  $X_i = 1(\{i^{th} \text{toss is a head}\})$ .
- $\Omega = \{(H, H), \dots, (T, T)\}$
- When t = 0, we have not observed anything so  $\mathcal{F}_0 = \{\phi, \Omega\}$
- Then  $\mathcal{F}_1 = \{\phi, \Omega, \{(H, H), (H, T)\}, \{(T, H), (T, T)\}\}$  (has 4 elements)
- $\mathcal{F}_2 = \mathcal{P}(\Omega)$  has 16 elements.
- S = ℝ and S is Borel sets, the smallest σ−algebra containing the open intervals on ℝ.
- Is  $X_1$  measurable w.r.t  $\mathcal{F}_1$ ?

- Is  $X_1$  measurable w.r.t  $\mathcal{F}_1$ ?
  - Yes, because  $X_1$  can take value 1 or 0.
  - For example,  $X_1^{-1}((a, b)) = \{(T, H), (T, T)\}$  with a < 0 and  $b \in (0, 1)$  and this is in  $\mathcal{F}_1$
  - $X_1^{-1}((a,b)) = \{(H,H),(H,T)\}$  with a < 1 and b > 1 and this is in  $\mathcal{F}_1$
  - $X_1^{-1}((a,b)) = \Omega$  with a < 0 and b > 1 and this is in  $\mathcal{F}_1$
  - But X<sub>2</sub><sup>-1</sup>((-0.1, 0.1)) = {(𝒯, 𝒯), (𝑘, 𝒯)}, this is not in 𝒯<sub>1</sub>, so X<sub>2</sub> is not measurable.

# Example-partial sums of i.i.d sequences

### Example

Let  $\{X_i\}_{i=1}^{\infty}$  be a sequence of i.i.d random variables with  $E[X_1] = \mu$ .  $E[|X_1 - \mu|]$  is bounded. Let  $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$ . Then  $\{Y_i = \sum_{k=1}^{i} X_k - i\mu\}$  is a martingale sequence w.r.t  $\{X_i\}$ .

# Example-partial sums of i.i.d sequences

### Example

Let  $\{X_i\}_{i=1}^{\infty}$  be a sequence of i.i.d random variables with  $E[X_1] = \mu$ .  $E[|X_1 - \mu|]$  is bounded. Let  $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$ . Then  $\{Y_i = \sum_{k=1}^{i} X_k - i\mu\}$  is a martingale sequence w.r.t  $\{X_i\}$ .

•  $Y_i$  is measurable w.r.t  $\mathcal{F}_i$ .

# Example-partial sums of i.i.d sequences

### Example

Let  $\{X_i\}_{i=1}^{\infty}$  be a sequence of i.i.d random variables with  $E[X_1] = \mu$ .  $E[|X_1 - \mu|]$  is bounded. Let  $\mathcal{F}_i = \sigma(X_1, \dots, X_i)$ . Then  $\{Y_i = \sum_{k=1}^{i} X_k - i\mu\}$  is a martingale sequence w.r.t  $\{X_i\}$ .

- $Y_i$  is measurable w.r.t  $\mathcal{F}_i$ .
- Finally,

$$E[Y_{i+1}|\mathcal{F}_i] = E[X_{i+1} + \sum_{k=1}^{i} X_k - (i+1)\mu|\mathcal{F}_i]$$
$$= \mu + \sum_{k=1}^{i} X_k - (i+1)\mu = Y_i$$

Let  $\{X_i\}_{i=1}^{\infty}$  be a sequence of random variables. Let  $Y_i = E[f(X)|X_1, \ldots, X_i]$  and assume that  $E[|f(X)|] < \infty$ . Then  $\{Y_i\}_{i=0}^n$  is a martingale sequence w.r.t  $\{X_i\}_{i=1}^n$ .

Let  $\{X_i\}_{i=1}^{\infty}$  be a sequence of random variables. Let  $Y_i = E[f(X)|X_1, \dots, X_i]$  and assume that  $E[|f(X)|] < \infty$ . Then  $\{Y_i\}_{i=0}^n$  is a martingale sequence w.r.t  $\{X_i\}_{i=1}^n$ .

•  $E[|Y_i|] = E[|E[f(X)|X_1, ..., X_i]|] \le E[|f(X)|] < \infty$ . (Use Jensen on |(.)|)

Let  $\{X_i\}_{i=1}^{\infty}$  be a sequence of random variables. Let  $Y_i = E[f(X)|X_1, \dots, X_i]$  and assume that  $E[|f(X)|] < \infty$ . Then  $\{Y_i\}_{i=0}^n$  is a martingale sequence w.r.t  $\{X_i\}_{i=1}^n$ .

- $E[|Y_i|] = E[|E[f(X)|X_1, ..., X_i]|] \le E[|f(X)|] < \infty$ . (Use Jensen on |(.)|)
- Furthermore,

$$\begin{split} E[Y_{i+1}|X_1,\ldots,X_i] &= E[E[f(X)|X_1,\ldots,X_{i+1}]|X_1,\ldots,X_i] \\ &= E[f(X)|X_1,\ldots,X_i] = Y_i \end{split} \text{ The tower property}$$

We are throwing *m* balls into *n* bins. At step *i* we place ball *i* into a bin chosen uniformly at random. Call the index of the bin  $X_i$ . Let *Z* denote the number of empty bins.  $E[Z|X_1, ..., X_i]$  is a martingale.

- Whats the big deal, just write  $Y_i = 1$ (Bin *i* is empty)
- $Z = \sum_{i} Y_{i}$ , and so I can compute expectation easily.
- Can we use traditional concentration arguments to say *Z EZ* is small?

Consider a random graph G(n, p) where the edge between i, j is added with probability p, independent of any other edges. We are interested in the Chromatic number of this graph  $(\chi)$ , i.e. the minimum number of colors to "properly" color this graph, i.e. no two nodes connected by an edge should have the same color.

- Let the vertices be labeled as  $1, \ldots, n$
- Let  $G_i$  denote the graph induced by nodes  $1, \ldots i$ .
- Set  $E[\chi|G_i]$  is a martingale.
- This is also called a vertex exposure filtration.
- See "Sharp concentration of the chromatic number on random graphs *G*<sub>*n*,*p*</sub>" by Shamir and Spencer

Let f, g be two densities such that g is absolutely continuous w.r.t f. Suppose  $\{X_i\}_{i=1}^{\infty} \stackrel{iid}{\sim} f$  and  $Y_n$  is the likelihood ratio  $\prod_{i=1}^n \frac{g(X_i)}{f(X_i)}$  for the first n datapoints. Then  $\{Y_n\}$  forms a Martingale sequence w.r.t  $\{X_n\}$ .

Let f, g be two densities such that g is absolutely continuous w.r.t f. Suppose  $\{X_i\}_{i=1}^{\infty} \stackrel{iid}{\sim} f$  and  $Y_n$  is the likelihood ratio  $\prod_{i=1}^n \frac{g(X_i)}{f(X_i)}$  for the first n datapoints. Then  $\{Y_n\}$  forms a Martingale sequence w.r.t  $\{X_n\}$ .

• First recall that  $E[|Y_n|] = E[Y_n] = 1$ 

Let f, g be two densities such that g is absolutely continuous w.r.t f. Suppose  $\{X_i\}_{i=1}^{\infty} \stackrel{iid}{\sim} f$  and  $Y_n$  is the likelihood ratio  $\prod_{i=1}^n \frac{g(X_i)}{f(X_i)}$  for the first n datapoints. Then  $\{Y_n\}$  forms a Martingale sequence w.r.t  $\{X_n\}$ .

• First recall that  $E[|Y_n|] = E[Y_n] = 1$ 

$$E[Y_{n+1}|X_1,\ldots,X_n] = E\left[\prod_{i=1}^{n+1} \frac{g(X_i)}{f(X_i)} \middle| X_1,\ldots,X_n\right]$$
$$= \prod_{i=1}^n \frac{g(X_i)}{f(X_i)} E\left[\frac{g(X_{n+1})}{f(X_{n+1})}\right] = Y_n$$

A sequence  $\{D_i\}$  of random variables adapted to a filtration  $\{\mathcal{F}_i\}$  is a Martingale Difference Sequence if,

 $E[|D_i|] < \infty \qquad E[D_{i+1}|\mathcal{F}_i] = 0$ 

A sequence  $\{D_i\}$  of random variables adapted to a filtration  $\{\mathcal{F}_i\}$  is a Martingale Difference Sequence if,

 $E[|D_i|] < \infty \qquad E[D_{i+1}|\mathcal{F}_i] = 0$ 

• Let  $\{Y_i\}$  be a martingale sequence.

A sequence  $\{D_i\}$  of random variables adapted to a filtration  $\{\mathcal{F}_i\}$  is a Martingale Difference Sequence if,

 $E[|D_i|] < \infty \qquad E[D_{i+1}|\mathcal{F}_i] = 0$ 

- Let  $\{Y_i\}$  be a martingale sequence.
- Then  $D_{i+1} = Y_{i+1} Y_i$  define a Martingale Difference Sequence.
- $E[D_{i+1}|\mathcal{F}_i] = E[Y_{i+1}|\mathcal{F}_i] E[Y_i|\mathcal{F}_i] = Y_i Y_i = 0.$

A sequence  $\{D_i\}$  of random variables adapted to a filtration  $\{\mathcal{F}_i\}$  is a Martingale Difference Sequence if,

 $E[|D_i|] < \infty \qquad E[D_{i+1}|\mathcal{F}_i] = 0$ 

- Let  $\{Y_i\}$  be a martingale sequence.
- Then  $D_{i+1} = Y_{i+1} Y_i$  define a Martingale Difference Sequence.
- $E[D_{i+1}|\mathcal{F}_i] = E[Y_{i+1}|\mathcal{F}_i] E[Y_i|\mathcal{F}_i] = Y_i Y_i = 0.$ 
  - $E[Y_{i+1}|\mathcal{F}_i] = Y_i$  because of the martingale property,
  - $E[Y_i|\mathcal{F}_i] = Y_i$  since  $Y_i$  is measurable w.r.t the filtration  $\mathcal{F}_i$ .

# **Concentration inequalities**

#### Theorem

Consider a Martingale sequence  $\{D_i\}$  (adapted to a filtration  $\{\mathcal{F}_i\}$ ) that satisfies  $E[e^{\lambda D_i}|\mathcal{F}_{i-1}] \leq e^{\lambda^2 \nu_i^2/2}$  a.s. for any  $|\lambda| < 1/b_i$ .

- The sum  $\sum_{i} D_{i}$  is sub-exponential with parameters  $(\sqrt{\sum_{k} \nu_{k}^{2}, b_{*}})$ where  $b_{*} := \max_{i} b_{i}$ .
- Hence for all  $t \ge 0$ ,

$$P\left[\left|\sum_{i=1}^{n} D_{i}\right| \geq t\right] \leq \begin{cases} 2e^{-\frac{t^{2}}{2\sum_{k}\nu_{k}^{2}}} & \text{If } 0 \leq t \leq \frac{\sum_{k}\nu_{k}^{2}}{b_{*}}\\ 2e^{-\frac{t}{2b_{*}}} & \text{If } t > \frac{\sum_{k}\nu_{k}^{2}}{b_{*}} \end{cases}$$

### Proof.

Let 
$$X := \sum_{i=1}^{n} D_i$$
.  
 $E[e^{\lambda \sum_i D_i}] = E[E[e^{\lambda \sum_i D_i} | \mathcal{F}_{n-1}]] = E[e^{\lambda \sum_{i=1}^{n-1} D_i} E[e^{\lambda D_n} | \mathcal{F}_{n-1}]]$   
 $\leq E[e^{\lambda \sum_{i=1}^{n-1} D_i}]e^{\lambda^2 \nu_n^2 / 2} \quad \text{If } |\lambda| < 1/b_n$   
 $\leq E[e^{\lambda \sum_{i=1}^{n-2} D_i}]e^{\lambda^2 (\nu_{n-1}^2 + \nu_n^2) / 2} \quad \text{If } |\lambda| < 1/b_n, 1/b_{n-1}$   
 $\leq e^{\sum_i \lambda^2 \nu_i^2 / 2} \quad \text{If } |\lambda| < \min_i 1/b_i$ 

Using our previous theorem on sub-exponential random variables, the result is proven in one direction. The other direction is identical leading to the factor of 2.  $\hfill \Box$ 

# Azuma-Hoeffding

### Corollary (Azuma-Hoeffding)

Let  $\{D_k\}$  be a Martingale Difference Sequence adapted to the filtration  $\{\mathcal{F}_k\}$  and suppose  $|D_k| \leq b_k$  a.s. for all  $k \geq 1$ . Then  $\forall t \geq 0$ ,

$$P\left[\left|\sum_{k=1}^{n} D_{k}\right| \geq t\right] \leq 2e^{-\frac{t^{2}}{2\sum_{k} b_{k}^{2}}}$$

### Proof.

- We can rework the last proof. We need  $|E[e^{\lambda D_n}|\mathcal{F}_{n-1}]|$ .
- This is bounded by  $e^{\lambda^2 b_n^2/2}$ , since  $D_n$  is mean zero sub-gaussian with  $\sigma = b_n$ .

### Theorem

Let  $f: \mathcal{X}^n \to \mathbb{R}$  satisfy the following bounded difference condition  $\forall x_1, \dots, x_n, x'_i \in \mathcal{X}$ :

$$|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n) - f(x_1,\ldots,x_{i-1},x'_i,x_{i+1},\ldots,x_n)| \le B_i,$$

then, 
$$P(|f(X) - E[f(X)]| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_i B_i^2}\right)$$

• Note that this boils down to Hoeffding's when *f* is the sum of bounded random variables.

# Proof.

• Define  $Y_i = E[f(X)|\mathcal{F}_i]$  and  $D_i = Y_i - Y_{i-1}$ .

# Proof.

- Define  $Y_i = E[f(X)|\mathcal{F}_i]$  and  $D_i = Y_i Y_{i-1}$ .
- Since {*Y<sub>i</sub>*} is a Martingale sequence w.r.t {*X<sub>i</sub>*}, {*D<sub>i</sub>*} is a Martingale difference sequence.

# Proof.

- Define  $Y_i = E[f(X)|\mathcal{F}_i]$  and  $D_i = Y_i Y_{i-1}$ .
- Since {*Y<sub>i</sub>*} is a Martingale sequence w.r.t {*X<sub>i</sub>*}, {*D<sub>i</sub>*} is a Martingale difference sequence.
- We have:

$$D_{i} = E[f(X)|\mathcal{F}_{i}] - E[f(X)|\mathcal{F}_{i-1}]$$
  
=  $E[f(X)|X_{1}, \dots, X_{i}] - E[f(X)|X_{1}, \dots, X_{i-1}]$   
 $\leq \sup_{X} (E[f(X)|X_{1}, \dots, x] - E[f(X)|X_{1}, \dots, X_{i-1}]) =: U_{i}$   
 $D_{i} \geq \inf_{X} (E[f(X)|X_{1}, \dots, x] - E[f(X)|X_{1}, \dots, X_{i-1}]) =: L_{i}$   
 $U_{i} - L_{i} \leq B_{i}$ 

# Proof.

• We also have:

$$U_i - L_i \leq B_i$$

• How?

$$U_{i} - L_{i} = \sup_{x} E[f(X)|X_{1}, \dots, x] - \inf_{y} E[f(X)|X_{1}, \dots, y]$$
  
=  $\sup_{x,y} (E[f(X)|X_{1}, \dots, x] - E[f(X)|X_{1}, \dots, y])$   
=  $\sup_{x,y} \int (f(x_{1:i-1}, x, X_{i+1:n}) - f(x_{1:i-1}, y, X_{i+1:n}))dP(X_{i+1:n})$   
 $\leq \sup_{x,y} \int |f(x_{1:i-1}, x, X_{i+1:n}) - f(x_{1:i-1}, y, X_{i+1:n})|dP(X_{i+1:n})$   
 $\leq B_{i}$ 

- Now apply Azuma-Hoeffding.
- So, where is independence being used?

### Example

Consider an i.i.d random variable sequence  $\{X_k\}_{k=1}^{\infty}$  with  $|X_k| \le b$ . Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

• Note that the summands are not independent.

### Example

Consider an i.i.d random variable sequence  $\{X_k\}_{k=1}^{\infty}$  with  $|X_k| \le b$ . Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

- Note that the summands are not independent.
- Also note that  $||X_i X_j| |X_i X_j'|| \leq |X_j X_j'| \leq 2b$

### Example

Consider an i.i.d random variable sequence  $\{X_k\}_{k=1}^{\infty}$  with  $|X_k| \le b$ . Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

- Note that the summands are not independent.
- Also note that  $||X_i-X_j|-|X_i-X_j'|| \leq |X_j-X_j'| \leq 2b$

• So 
$$|U(x_1,...,x_i,...,x_n) - U(x_1,...,x_i',...,X_n)| \le \frac{(n-1)2b}{\binom{n}{2}} = \frac{4b}{n}$$

### Example

Consider an i.i.d random variable sequence  $\{X_k\}_{k=1}^{\infty}$  with  $|X_k| \le b$ . Define the mean absolute deviation:

$$U = \frac{1}{\binom{n}{2}} \sum_{j < k} |X_j - X_k|$$

As we will see later, the above is a type of a pairwise U-Statistics. We want to bound |U - E[U]|.

- Note that the summands are not independent.
- Also note that  $||X_i-X_j|-|X_i-X_j'|| \leq |X_j-X_j'| \leq 2b$

• So 
$$|U(x_1,...,x_i,...,x_n) - U(x_1,...,x_i',...,X_n)| \le \frac{(n-1)2b}{\binom{n}{2}} = \frac{4b}{n}$$

• Use McDiarmid's inequality,  $P(|U - E[U]| \ge t) \le 2 \exp\left(\frac{-nt^2}{8b^2}\right)$ 

Consider an Erdős Rényi (ER(p)) random graph. What can we say about the number of triangles  $\Delta$ ?

- Let *n* be the number of nodes.  $m = \binom{n}{2}$  be the number of ordered pairs. Call this set *E*.
- An ER(p) graph chooses the edges randomly as iid Bernoulli r.v.s {X<sub>e</sub> : e ∈ E} with P(X<sub>e</sub> = 1) = p.
- Let T ⊂ E<sup>3</sup> be the set of 3-tuples of node pairs which can form a triangle. e.g. {(i,j), (j, k), (k, i)} ∈ T. |T| = 
   <sup>n</sup>
   <sub>3</sub>.

• We have 
$$f(X) = \sum_{\{e_1, e_2, e_3\} \in \mathcal{T}} X_{e_1} X_{e_2} X_{e_3}.$$

Consider an Erdős Rényi (ER(p)) random graph. What can we say about the number of triangles  $\Delta$ ?

- If I switch  $X_e = 1$  to 0 how much can f(X) change?
- It changes by all triangles incident on that edge. The maximum number of such triangles is n 2. So L = n 2.

• Hence 
$$P(|f(X) - E[f(X)]| \ge t) \le 2e^{-\frac{2t^2}{m(n-2)^2}}$$

- $E[f(X)] = {n \choose 3} p^3$ . If we set  $t = \Theta(n^2 \log n)$ , then the error probability goes to zero.
- But in order for this to give concentration we need,  $t/n^3\rho^3 \to 0,$  i.e.  $np >> n^{2/3}$

Consider an Erdős Rényi (ER(p)) random graph. What can we say about the number of triangles  $\Delta$ ?

- One can however use Chen-Stein method to show that f(X) is approximately  $Poisson\left(\binom{n}{3}p^3\right)$ .
- So the above should hold as long as  $np \to \infty$ . But McDiarmid requires a much stronger condition!
- What if we could plug in the expected value of the Lipschitz constant, i.e.  $np^2$ ?
- Then the exponent would be  $e^{-2t^2/n^4p^4}$ . Taking  $t = n^2p^2$ , we see that concentration would amount to having  $np >> \log n$  which matches with the Poisson limit argument.

# Example: Number of triangles in an Erdos Renyi graph-Cont.

### Example

Consider a random graph G(n, p) where the edge between i, j is added with probability p, independent of any other edges. We are interested in the Chromatic number of this graph  $(\chi)$ , i.e. the minimum number of colors to "properly" color this graph, i.e. no two nodes connected by an edge should have the same color.

- We need independent RVs Z<sub>1</sub>,..., Z<sub>i</sub> so that we can construct a Doob martingale E[\(\chi\)|Z<sub>1</sub>,..., Z<sub>i</sub>] and apply McDiarmid's inequality.
- Let  $Z_i$  be the edges from node *i* to nodes  $1, \ldots, i-1$ .
- *χ* cannot decrease by more than 1, because if the graph with node *i* can be colored by *k* − 1 colors, then the graph without node *i* can be
   colored using ≤ *k* − 1 colors.
- Similarly, it can't increase by more than 1, because you can just color node *i* with a new color, thereby increasing the chromatic number by 1.

# Lipschitz functions of Gaussian random variables

### Definition

A function  $f : \mathbb{R}^n \to \mathbb{R}$  is *L*-Lipschitz w.r.t the Euclidean norm if

$$|f(x) - f(y)| \le L ||x - y||_2 \qquad \forall x, y \in \mathbb{R}^n$$

#### Theorem

Let  $(X_1, ..., X_n)$  be a vector of iid N(0, 1) random variables. Let  $f : \mathbb{R}^n \to \mathbb{R}$  be L-Lipschitz w.r.t the Euclidean norm. Then f(X) - E[f(X)] is sub-gaussian with parameter at most L, i.e.  $\forall t \ge 0$ ,

$$P(|f(X) - E[f(X)]| \ge t) \le e^{-\frac{t^2}{2L^2}}$$

• A *L* Lipschitz function of a vector of i.i.d N(0, 1) random variables concentrate like a  $N(0, L^2)$  random variable, irrespective of how long the vector is.