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Recall-Lipschitz functions of Gaussian random variables

Definition

A function F : Rn → R is L−Lipschitz w.r.t the Euclidean norm if

|F (x)− F (y)| ≤ L∥x − y∥2 ∀x , y ∈ Rn

Theorem (LG:Lipschtiz functions of Gaussians)

Let (X1, . . . ,Xn) be a vector of iid N(0, 1) random variables. Let

f : Rn → R be L−Lipschitz w.r.t the Euclidean norm. Then

F (X )− E [F (X )] is sub-gaussian with parameter at most L, i.e. ∀t ≥ 0,

P (|F (X )− E [F (X )]| ≥ t) ≤ e
− t2

2L2

• So a L−Lipschitz function of n gaussian random variables behave

like a subgaussian with variance proxy L2.
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Proof – (Courtesy Tao, Maurey and Pisier)

We will assume that f is differentiable everywhere. So, L Lipschitz simply

means that the gradient norm is bounded by L. Part of the reason for

this is a consequence of Rademacher’s theorem, i.e. Lipschitz continuous

functions are differentiable almost everywhere.

Proof.

• WLOG assume E [F (X )] = 0 and L = 1. Assume for simplicity that F

is smooth

• We will just prove the upper tail P(F (X ) ≥ λ) ≤ C exp(−cλ2).

• All we need is

E [etF (X )] ≤ eC
′t2 for t > 0 (1)

• Lipschitz property implies the gradient |∇F (x)| ≤ 1∀x ∈ Rn
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Proof contd.

Proof contd.

• Consider an iid copy Y .

• Jensen’s inequality implies E [e−tF (Y )] ≥ e−tE [F (Y )] = 1

• E [etF (X )] ≤ E
[
et(F (X )−F (Y ))

]

•

F (X )− F (Y ) =

∫ π/2

0

d

dθ
F (X sin θ + Y cos θ︸ ︷︷ ︸

Xθ

)dθ

=
π

2
Eθ

[
F ′(Xθ) · X

′
θ

]
et(F (X )−F (Y )) ≤ Eθ

[
e
π
2 tF

′(Xθ)·X
′
θ

]
• X ′

θ = X cos θ − Y sin θ. Also note that Xθ,X
′
θ
iid∼ N(0, In)
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Proof contd.

Proof contd.

• et(F (X )−F (Y )) ≤ 2

π

∫ π/2

0
e
π
2 tF

′(Xθ)·X
′
θdθ

• X ′
θ = X cos θ − Y sin θ. Also note that Xθ,X

′
θ
iid∼ N(0, In)

•

E [et(F (X )−F (Y ))] ≤ 2

π

∫ π/2

0
E [e

π
2 tF

′(Xθ)·X
′
θ ]dθ

=
2

π

∫ π/2

0
EXθ

E
X ′
θ
[e

π
2 tF

′(Xθ)·X
′
θ |Xθ]dθ

≤ e
π2t2
8

• The last step is true because conditioned on Xθ,

F ′(Xθ) · X
′
θ ∼ N(0, σ2) where σ ≤ 1.

• This proves Eq 1.
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Example 1

• Remember our friend chi square r.v.s? Consider {Xi}
n
i=1

iid∼ N(0, 1).

• We proved that Y =
∑
i

X2
i is subexponential and we got the bound

P(|Y /n − 1| ≥ ϵ) ≤ 2e−nϵ2/8.

• Lets try to prove a similar bound with the LG theorem.

• Let x = (x1, . . . , xn) and f (x) = ∥x∥2.

• Note that Euclidian norm is 1-Lipschitz.

• So we have P(f (X )− E [f (X )] ≥ t) ≤ e−t2/2 for t ≥ 0.

• Since E [
√
V ] ≤

√
E [V ], we have E [

√
Y ] ≤

√
E [Y ] =

√
n.

• P(f (X ) ≥ E [f (X )] + t) ≥ P(
√
Y ≥

√
n + t) = P(Y /n ≥ (1 + ϵ)2)

• Since (1 + ϵ/3)2 ≤ 1 + ϵ, for ϵ ∈ (0, 1),

e
−nϵ20/18 ≥ P(Y /n ≥ (1 + ϵ0/3)

2) ≥ P(Y /n ≥ 1 + ϵ0)
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Example 2: order statistics

Example

Consider a sequence of independent standard normal r.v.s

X = {X1, . . . ,Xn}. Let X(1) ≥ X(2) ≥ · · · ≥ X(n).

P(|X(k) − E [X(k)]| ≥ ϵ) ≤ 2e−ϵ2/2

Proof.

• First note that |X(k) − Y(k)| ≤ ∥X − Y ∥2. (How?)

• So the order statistics are 1-Lipschitz.
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Complexity

Example

Consider a iid sequence X = {Xi}
n
i=1. We will bound f (X ) := sup

a∈A
aTX

where A is a compact subset of Rn such that W = sup
a∈A

∥a∥2 < ∞.

• Why cant we just use Chernoff?

• First let us check if f (X ) is Lipschitz. Let a∗ and a′∗ be the

maximizers of f (X ) and f (X ′).
f (X )− f (X ′) = aT∗ X − a′T∗ X ′ ≤ aT∗ (X − X ′)

≤ sup
a∈A

aT (X − X ′) ≤ W∥X − X ′∥2
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Complexity

Example

Consider a iid sequence X = {Xi}
n
i=1. We will bound f (X ) := sup

a∈A
aTX

where A is a compact subset of Rn such that W = sup
a∈A

∥a∥2 < ∞.

• If Xi ∼ N(0, 1) using Gaussian+Lipschtz

P(|f (X )− E [f (X )]| ≥ t) ≤ 2e
− t2

2W2

• How about McDiarmid?
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