SDS 384 11: Theoretical Statistics
 Lecture 6: Lipschitz continuous functions

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin

Recall-Lipschitz functions of Gaussian random variables

Definition

A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-Lipschitz w.r.t the Euclidean norm if

$$
|F(x)-F(y)| \leq L\|x-y\|_{2} \quad \forall x, y \in \mathbb{R}^{n}
$$

Theorem (LG:Lipschtiz functions of Gaussians)

Let $\left(X_{1}, \ldots, X_{n}\right)$ be a vector of iid $N(0,1)$ random variables. Let
$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be L-Lipschitz w.r.t the Euclidean norm. Then
$F(X)-E[F(X)]$ is sub-gaussian with parameter at most L, i.e. $\forall t \geq 0$,

$$
P(|F(X)-E[F(X)]| \geq t) \leq e^{-\frac{t^{2}}{2 L^{2}}}
$$

- So a L-Lipschitz function of n gaussian random variables behave like a subgaussian with variance proxy L^{2}.

Proof - (Courtesy Tao, Maurey and Pisier)

We will assume that f is differentiable everywhere. So, L Lipschitz simply means that the gradient norm is bounded by L. Part of the reason for this is a consequence of Rademacher's theorem, i.e. Lipschitz continuous functions are differentiable almost everywhere.

Proof.

- WLOG assume $E[F(X)]=0$ and $L=1$. Assume for simplicity that F is smooth
- We will just prove the upper tail $P(F(X) \geq \lambda) \leq C \exp \left(-c \lambda^{2}\right)$.
- All we need is

$$
\begin{equation*}
E\left[e^{t F(X)}\right] \leq e^{C^{\prime} t^{2}} \quad \text { for } t>0 \tag{1}
\end{equation*}
$$

- Lipschitz property implies the gradient $|\nabla F(x)| \leq 1 \forall x \in \mathbb{R}^{n}$

Proof contd.

Proof contd.

- Consider an iid copy Y.
- Jensen's inequality implies $E\left[e^{-t F(Y)}\right] \geq e^{-t E[F(Y)]}=1$
- $E\left[e^{t F(X)}\right] \leq E\left[e^{t(F(X)-F(Y))}\right]$

$$
F(X)-F(Y)=\int_{0}^{\pi / 2} \frac{d}{d \theta} F(\underbrace{X \sin \theta+Y \cos \theta}_{X_{\theta}}) d \theta
$$

$$
\begin{aligned}
& =\frac{\pi}{2} E_{\theta}\left[F^{\prime}\left(X_{\theta}\right) \cdot X_{\theta}^{\prime}\right] \\
e^{t(F(X)-F(Y))} & \leq E_{\theta}\left[e^{\left.\frac{\pi}{2} t F^{\prime}\left(X_{\theta}\right) \cdot X_{\theta}^{\prime}\right]}\right.
\end{aligned}
$$

- $X_{\theta}^{\prime}=X \cos \theta-Y \sin \theta$. Also note that $X_{\theta}, X_{\theta}^{\prime} \stackrel{i i d}{\sim} N\left(0, I_{n}\right)$

Proof contd.

Proof contd.

- $e^{t(F(X)-F(Y))} \leq \frac{2}{\pi} \int_{0}^{\pi / 2} e^{\frac{\pi}{2} t F^{\prime}\left(X_{\theta}\right) \cdot X_{\theta}^{\prime}} d \theta$
- $X_{\theta}^{\prime}=X \cos \theta-Y \sin \theta$. Also note that $X_{\theta}, X_{\theta}^{\prime} \stackrel{i i d}{\sim} N\left(0, I_{n}\right)$

$$
\begin{aligned}
E\left[e^{t(F(X)-F(Y))}\right] & \leq \frac{2}{\pi} \int_{0}^{\pi / 2} E\left[e^{\frac{\pi}{2} t F^{\prime}\left(X_{\theta}\right) \cdot X_{\theta}^{\prime}}\right] d \theta \\
& =\frac{2}{\pi} \int_{0}^{\pi / 2} E_{X_{\theta}} E_{X_{\theta}^{\prime}}\left[\left.e^{\frac{\pi}{2} t F^{\prime}\left(X_{\theta}\right) \cdot X_{\theta}^{\prime}} \right\rvert\, X_{\theta}\right] d \theta \\
& \leq e^{\frac{\pi^{2} t^{2}}{8}}
\end{aligned}
$$

- The last step is true because conditioned on X_{θ}, $F^{\prime}\left(X_{\theta}\right) \cdot X_{\theta}^{\prime} \sim N\left(0, \sigma^{2}\right)$ where $\sigma \leq 1$.
- This proves Eq 1.

Example 1

- Remember our friend chi square r.v.s? Consider $\left\{X_{i}\right\}_{i=1}^{n} \stackrel{i i d}{\sim} N(0,1)$.
- We proved that $Y=\sum_{i} X_{i}^{2}$ is subexponential and we got the bound $P(|Y / n-1| \geq \epsilon) \leq 2 e^{-n \epsilon^{2} / 8}$.
- Lets try to prove a similar bound with the LG theorem.
- Let $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $f(\underline{x})=\|\underline{x}\|_{2}$.
- Note that Euclidian norm is 1-Lipschitz.
- So we have $P(f(X)-E[f(X)] \geq t) \leq e^{-t^{2} / 2}$ for $t \geq 0$.
- Since $E[\sqrt{V}] \leq \sqrt{E[V]}$, we have $E[\sqrt{Y}] \leq \sqrt{E[Y]}=\sqrt{n}$.
- $P(f(X) \geq E[f(X)]+t) \geq P(\sqrt{Y} \geq \sqrt{n}+t)=P\left(Y / n \geq(1+\epsilon)^{2}\right)$
- Since $(1+\epsilon / 3)^{2} \leq 1+\epsilon$, for $\epsilon \in(0,1)$,
$e^{-n \epsilon_{0}^{2} / 18} \geq P\left(Y / n \geq\left(1+\epsilon_{0} / 3\right)^{2}\right) \geq P\left(Y / n \geq 1+\epsilon_{0}\right)$

Example 2: order statistics

Example

Consider a sequence of independent standard normal r.v.s
$X=\left\{X_{1}, \ldots, X_{n}\right\}$. Let $X_{(1)} \geq X_{(2)} \geq \cdots \geq X_{(n)}$.
$P\left(\left|X_{(k)}-E\left[X_{(k)}\right]\right| \geq \epsilon\right) \leq 2 e^{-\epsilon^{2} / 2}$
Proof.

- First note that $\left|X_{(k)}-Y_{(k)}\right| \leq\|X-Y\|_{2}$. (How?)
- So the order statistics are 1-Lipschitz.

Complexity

Example

Consider a iid sequence $X=\left\{X_{i}\right\}_{i=1}^{n}$. We will bound $f(X):=\sup _{a \in \mathcal{A}} a^{T} X$ where \mathcal{A} is a compact subset of \mathbb{R}^{n} such that $\mathcal{W}=\sup _{a \in \mathcal{A}}\|a\|_{2}<\infty$.

- Why cant we just use Chernoff?
- First let us check if $f(X)$ is Lipschitz. Let a_{*} and a_{*}^{\prime} be the maximizers of $f(X)$ and $f\left(X^{\prime}\right)$.

$$
\begin{aligned}
f(X)-f\left(X^{\prime}\right) & =a_{*}^{T} X-a_{*}^{\prime T} X^{\prime} \leq a_{*}^{T}\left(X-X^{\prime}\right) \\
& \leq \sup _{a \in \mathcal{A}} a^{T}\left(X-X^{\prime}\right) \leq \mathcal{W}\left\|X-X^{\prime}\right\|_{2}
\end{aligned}
$$

Complexity

Example

Consider a iid sequence $X=\left\{X_{i}\right\}_{i=1}^{n}$. We will bound $f(X):=\sup _{a \in \mathcal{A}} a^{T} X$ where \mathcal{A} is a compact subset of \mathbb{R}^{n} such that $\mathcal{W}=\sup _{a \in \mathcal{A}}\|a\|_{2}<\infty$.

- If $X_{i} \sim N(0,1)$ using Gaussian+Lipschtz

$$
P(|f(X)-E[f(X)]| \geq t) \leq 2 e^{-\frac{t^{2}}{2 \mathcal{W}^{2}}}
$$

- How about McDiarmid?

