SDS 384 11: Theoretical Statistics
 Lecture 7: Talagrand's inequality

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin

Convex Lipschitz functions of bounded random variables

Theorem

Consider a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Lipschitz constant L. Also consider n iid random variables $X_{1}, \ldots, X_{n} \in[0,1]$. We have for $t>0$

$$
P\left(\left|f(X)-M_{f}\right| \geq t\right) \leq 4 \exp \left(-\frac{t^{2}}{16 L^{2}}\right)
$$

where M_{f} is the median of f.

- $P\left(f(X) \geq M_{f}\right) \geq 1 / 2$ and $P\left(f(X) \leq M_{f}\right) \geq 1 / 2$
- Often the median can be replaced by the mean with a little give in the t.

From convex Lipschitz functions to sets

- Let d denote the Euclidean distance
- Define $A=\left\{x: f(x) \leq M_{f}\right\}$
- Define $d(x, A)=\inf _{y \in A} d(x, y)$
- Define $A_{t}=\{x: d(x, A) \leq t\}$
- Since f is 1 Lipschitz (WLOG), $x \in A_{t} \Rightarrow f(x) \leq M_{f}+t$
- So $P\left(x \in A_{t}\right) \leq P\left(f(x) \leq M_{f}+t\right)$
- All we need is to upper bound $P\left(x \notin A_{t}\right)$
- Since f is convex, A is a convex set.

Talagrand's inequality: original statement

Theorem

Let $A \subset \mathbb{R}^{n}$ be a convex set and $X \sim \operatorname{Unif}\left(\{0,1\}^{n}\right)$. Then,

$$
P(X \in A) P\left(X \notin A_{t}\right) \leq e^{-t^{2} / 16} .
$$

- This is basically saying that if A is convex and and $P(x \in A)$ is large then A_{t} takes up most of the space in the unit hypercube for $t \gg 1$.

Is convexity needed?

Example

Let $A:=\left\{x \in\{0,1\}^{n}: \sum_{i=1}^{n} x_{i} \leq n / 2\right\}$. Consider a product measure such that $X_{i} \sim \operatorname{Bernoulli}(1 / 2)$. Let $X=\left(X_{1}, \ldots, X_{n}\right)$. Then $P(X \in A)$ is large. But is $P\left(X \notin A_{t}\right)$ large?

- Note that A is not convex.
- Also see that

$$
\begin{aligned}
\left|y^{\top} 1-x^{T} 1\right| & \leq\|y-x\|_{1}=\|y-x\|_{2}^{2} \\
\left\{y \in A_{t}\right\} & \subseteq\left\{y^{\top} 1 \leq n / 2+t^{2}\right\} \\
P\left(Y \notin A_{t}\right) & \geq P\left(Y^{T} 1 \geq n / 2+t^{2}\right)
\end{aligned}
$$

- Now $P\left(X \notin A_{t}\right)$, which is large for $t \approx(\log n)^{1 / 4}$, contrary to the result of Talagrand.
- What if we define A as a subset of R^{n} ?

Is convexity needed?

- Now A is convex.
- Distance to A of a point with more than $n / 2$ ones is simply its distance to the hyperplane $x^{T} 1-n / 2=0$
- Consider a point y with $n / 2+k$ ones.
- The distance to the previous nonconvex A is \sqrt{k}
- But distance to the convex A is $\left|y^{T} 1-n / 2\right| / \sqrt{n}=k / \sqrt{n}$

$$
\begin{aligned}
\left\{y \in A_{t}^{(\text {conv })}\right\} & =\left\{y^{\top} 1-n / 2 \leq t \sqrt{n}\right\} \\
P\left(Y \notin A_{t}^{(\text {conv })}\right) & =P\left(Y^{\top} 1 \geq n / 2+t \sqrt{n}\right)
\end{aligned}
$$

- Here, everything is fine since this is indeed large when $t \gg 1$

Going from median to expectation

- First note that $E\left[\left(f(X)-M_{f}\right)^{2}\right] \leq C L^{2}$ by using Talagrand's inequality. (How?)
- Now note that $\operatorname{var}(f(X)) \leq E\left[\left(f(X)-M_{f}\right)^{2}\right] \leq C L^{2}$
- Finally $P(|f(X)-E[f(X)]| \geq 2 \sqrt{\operatorname{var}(f(X))}) \leq 1 / 4$.
- So we must have $M_{f} \in[E[f(X)] \pm c L]$
- So, $P(|f(X)-E[f(X)]| \geq c L+t) \leq 4 e^{-t^{2} / 16 L^{2}}$

Operator norm of random matrices

Example

Consider a random matrix $M=\left[X_{i j}\right] \in[a, b]^{n \times m}$ where $X_{i j}$ are independent random variables.

$$
P\left(\|M\|_{o p} \geq E[\|M\| o p]+c \sqrt{\log n}\right)=o(1)
$$

- For $E\left[X_{i j}\right]=0$ and $\operatorname{var}\left(X_{i j}\right)=\sigma^{2}$, it can be shown that $E\left[\|M\|_{o p}\right] \leq 2 \sigma \sqrt{n}$.
- $\|M\|_{o p}$ is 1 Lipschitz and convex. (how?)

Operator norm of random matrices

Example

Consider a random matrix $M=\left[X_{i j}\right] \in[a, b]^{n \times m}$ where $X_{i j}$ are independent random variables.

$$
P\left(\|M\|_{o p} \geq E[\|M\| o p]+c \sqrt{\log n}\right)=o(1)
$$

- For $E\left[X_{i j}\right]=0$ and $\operatorname{var}\left(X_{i j}\right)=\sigma^{2}$, it can be shown that $E\left[\|M\|_{o p}\right] \leq 2 \sigma \sqrt{n}$.
- $\|M\|_{o p}$ is 1 Lipschitz and convex. (how?)

Complexity

Example

Consider a iid sequence $X=\left\{X_{i}\right\}_{i=1}^{n}$. We will bound $f(X):=\sup _{a \in \mathcal{A}} a^{T} X$ where \mathcal{A} is a compact subset of \mathbb{R}^{n} such that $\mathcal{W}=\sup _{a \in \mathcal{A}}\|a\|_{2}<\infty$.

- Why cant we just use Chernoff?
- First let us check if $f(X)$ is Lipschitz. Let a_{*} and a_{*}^{\prime} be the maximizers of $f(X)$ and $f\left(X^{\prime}\right)$.

$$
\begin{aligned}
f(X)-f\left(X^{\prime}\right) & =a_{*}^{T} X-a_{*}^{\prime T} X^{\prime} \leq a_{*}^{T}\left(X-X^{\prime}\right) \\
& \leq \sup _{a \in \mathcal{A}} a^{T}\left(X-X^{\prime}\right) \leq \mathcal{W}\left\|X-X^{\prime}\right\|_{2}
\end{aligned}
$$

- How about convex? Consider the set $S_{c}=\{x: f(x) \leq c\}$.
- consider $x, y \in S_{c}$. Then

$$
f(\lambda x+(1-\lambda) y) \leq f(\lambda x)+f((1-\lambda) y) \leq c
$$

Complexity

Example

Consider a iid sequence $X=\left\{X_{i}\right\}_{i=1}^{n}$. We will bound $f(X):=\sup _{a \in \mathcal{A}} a^{T} X$ where \mathcal{A} is a compact subset of \mathbb{R}^{n} such that $\mathcal{W}=\sup _{a \in \mathcal{A}}\|a\|_{2}<\infty$.

- If $X_{i} \sim N(0,1)$ using Gaussian+Lipschtz

$$
P(|f(X)-E[f(X)]| \geq t) \leq 2 e^{-\frac{t^{2}}{2 \mathcal{W}^{2}}}
$$

- If X_{i} are bounded, then Talagrand gives us the same thing (modulo constants).
- How about McDiarmid?

Complexity

Example

Consider a iid Rademacher sequence $X=\left\{X_{i}\right\}_{i=1}^{n}$. We will bound $f(X):=\sup _{a \in \mathcal{A}} a^{T} X$ where \mathcal{A} is a compact subset of \mathbb{R}^{n} such that $\mathcal{W}=\sup _{a \in \mathcal{A}}\|a\|_{2}<\infty$.

- Consider $X(k) \in[0,1]$
- Consider X and X^{\prime} differing in the k-th coordinate,

$$
f(X)-f\left(X^{\prime}\right)=a_{*}^{T} X-a_{*}^{\prime T} X^{\prime} \leq a_{*}^{T}\left(X-X^{\prime}\right)
$$

$$
\leq \sup _{a \in \mathcal{A}} a_{k}\left(X(k)-X^{\prime}(k)\right) \leq \sup _{a \in \mathcal{A}}\left|a_{k}\right|
$$

- So McDiarmid gives:

$$
P(|f(X)-E[f(X)]| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i} \sup _{a \in \mathcal{A}}\left|a_{i}\right|^{2}}\right)
$$

