Theorem

Consider a convex function \(f : \mathbb{R}^n \to \mathbb{R} \) with Lipschitz constant \(L \). Also consider \(n \) iid random variables \(X_1, \ldots, X_n \in \{-1, 1\} \). We have for \(t > 0 \)

\[
P(|f(X) - M_f| \geq t) \leq 4 \exp \left(-\frac{t^2}{16L^2}\right),
\]

where \(M_f \) is the median of \(f \).

- Often the median can be replaced by the mean with a little give in the \(t \).
From convex Lipschitz functions to sets

• Let d denote the Euclidean distance
• Define $A = \{x : f(x) \leq M_f\}$
• Define $d(x, A) = \inf_{y \in A} d(x, y)$
• Define $A_t = \{x : d(x, A) \leq t\}$
• Since f is 1 Lipschitz (WLOG), $x \in A_t \Rightarrow f(x) \leq M_f + t$
• So $P(x \in A_t) \leq P(f(x) \leq M_f + t)$
• All we need is to upper bound $P(x \notin A_t)$
• Since f is convex, A is a convex set.
Talagrand’s inequality: original statement

Theorem

Let $A \subset \mathbb{R}^n$ be a convex set. Then,

$$P(X \in A)P(X \notin A_t) \leq e^{-t^2/16}.$$

- This is basically saying that if A is convex and $P(x \in A)$ is large then A_t takes up most of the space in the unit hypercube for $t \gg 1$.
Is convexity needed?

Example

Let $A := \{x \in \{0, 1\}^n : \sum_{i=1}^{n} x_i \leq n/2\}$. Consider a product measure such that $X_i \sim Bernoulli(1/2)$. Let $X = (X_1, \ldots, X_n)$. Then $P(X \in A)$ is large. But is $P(X \not\in A_t)$ large?

- Note that A is not convex.
- Also see that

$$|y^T 1 - x^T 1| \leq \|y - x\|_1 = \|y - x\|_2$$
$$\{y \in A_t\} \subseteq \{y^T 1 \leq n/2 + t^2\}$$

$$P(Y \not\in A_t) \geq P(Y^T 1 \geq n/2 + t^2)$$

- Now $P(X \not\in A_t)$, which is large for $t \approx (\log n)^{1/4}$, contrary to the result of Talagrand.
- What if we define A as a subset of R^n?
Is convexity needed?

• Now A is convex.
• Distance to A of a point with more than $n/2$ ones is simply its distance to the hyperplane $x^T 1 - n/2 = 0$
• Consider a point y with $n/2 + k$ ones.
• The distance to the previous nonconvex A is \sqrt{k}
• But distance to the convex A is $|y^T 1 - n/2|/\sqrt{n} = k/\sqrt{n}$

$$\{y \in A_t^{(conv)} \} = \{y^T 1 - n/2 \leq t\sqrt{n}\}$$
$$P(Y \not\in A_t^{(conv)}) = P(Y^T 1 \geq n/2 + t\sqrt{n})$$

• Here, everything is fine since this is indeed large when $t \gg 1$
How about Azuma Hoeffding or McDiarmid?

• Let f be convex and one Lipschitz. Also, say $E[f(X)]$ was equal to the median.

• Note that in our setting, $|f(x) - f(y)| \leq 2$ when x, y differ in one coordinate.

• So using McDiarmid’s inequality gives

 $$P(|f(X) - E[f(X)]| \geq t) \leq 2 \exp \left(-\frac{2t^2}{4n} \right),$$

 • i.e. it gives concentration when $t \gg \sqrt{n}$.

• But Talagrand’s inequality gives

 $$P(|f(X) - E[f(X)]| \geq t) \leq 4 \exp \left(-\frac{t^2}{16} \right)$$

 • i.e. it gives concentration when $t \gg 1$. ($X \gg 1$ implies X has factors logarithmic in n)
First note that $E[(f(X) - M_f)^2] \leq CL^2$ by using Talagrand’s inequality. (How?)

Now note that $\text{var}(f(X)) \leq E[(f(X) - M_f)^2] \leq CL^2$

Finally $P(|f(X) - E[f(X)]| \geq 2\sqrt{\text{var}(f(X))}) \leq 1/4$.

So we must have $M_f \in [E[f(X)] \pm cL]$

So, $P(|f(X) - E[f(X)]| \geq cL + t) \leq 4e^{-t^2/16L^2}$
Example

Consider a random matrix $M = [X_{ij}] \in [a, b]^{n \times m}$ where X_{ij} are independent random variables.

$$P(\|M\|_{op} \geq E[\|M\|_{op}] + c\sqrt{\log n}) = o(1)$$

- For $E[X_{ij}] = 0$ and $\text{var}(X_{ij}) = \sigma^2$, it can be shown that $E[\|M\|_{op}] \leq 2\sigma \sqrt{n}$.
- $\|M\|_{op}$ is 1 Lipschitz and convex. (how?)
Example

Consider a random matrix $M = [X_{ij}] \in [a, b]^{n \times m}$ where X_{ij} are independent random variables.

$$P(\|M\|_{op} \geq E[\|M\|_{op}] + c\sqrt{\log n}) = o(1)$$

- For $E[X_{ij}] = 0$ and $\text{var}(X_{ij}) = \sigma^2$, it can be shown that $E[\|M\|_{op}] \leq 2\sigma \sqrt{n}$.
- $\|M\|_{op}$ is 1 Lipschitz and convex. (how?)
Consider a iid sequence $X = \{X_i\}_{i=1}^n$. We will bound $f(X) := \sup_{a \in A} a^T X$ where A is a compact subset of \mathbb{R}^n such that $\mathcal{W} = \sup_{a \in A} \|a\|_2 < \infty$.

- Why can't we just use Chernoff?
- First let us check if $f(X)$ is Lipschitz. Let a_* and a'_* be the maximizers of $f(X)$ and $f(X')$.

 $$f(X) - f(X') = a_*^T X - a_*^T X' \leq a_*^T(X - X')$$

 $$\leq \sup_{a \in A} a^T (X - X') \leq \mathcal{W} \|X - X'\|_2$$

- How about convex? Consider the set $S_c = \{x : f(x) \leq c\}$.

 - consider $x, y \in S_c$. Then

 $$f(\lambda x + (1 - \lambda)y) \leq f(\lambda x) + f((1 - \lambda)y) \leq c$$
Complexity

Example

Consider a iid sequence $X = \{X_i\}_{i=1}^n$. We will bound $f(X) := \sup_{a \in A} a^T X$ where A is a compact subset of \mathbb{R}^n such that $\mathcal{W} = \sup_{a \in A} \|a\|_2 < \infty$.

- If $X_i \sim N(0, 1)$ using Gaussian+Lipschitz

 $$P(|f(X) - E[f(X)]| \geq t) \leq 2e^{-\frac{t^2}{2\mathcal{W}^2}}$$

- If X_i are bounded, then Talagrand gives us the same thing (modulo constants).

- How about McDiarmid?
Example

Consider an iid Rademacher sequence \(X = \{X_i\}_{i=1}^n \). We will bound

\[
f(X) := \sup_{a \in A} a^T X \text{ where } A \text{ is a compact subset of } \mathbb{R}^n \text{ such that}
\]

\[
\mathcal{W} = \sup_{a \in A} \|a\|_2 < \infty.
\]

- Consider \(X \) and \(X' \) differing in the \(k \)-th coordinate,

\[
f(X) - f(X') = a_*^T X - a_*'^T X' \leq a_*^T (X - X')
\]

\[
\leq \sup_{a \in A} a_k (X(k) - X'(k)) \leq \sup_{a \in A} |a_k|
\]

- So McDiarmid gives:

\[
P(|f(X) - E[f(X)]| \geq t) \leq 2 \exp(- \frac{t^2}{2 \sum_{i} \sup_{a \in A} |a_i|^2})
\]