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U Statistics

• We will see many interesting examples of U statistics.

• Interesting properties

• Unbiased

• Reduces variance

• Concentration (via McDiarmid)

• Asymptotic variance

• Asymptotic distribution
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An estimable parameter

• Let P be a family of probability measures on some arbitrary

measurable space.

• We will now define a notion of an an estimable parameter. (coined

“regular parameters” by Hoeffding.)

• An estimable parameter θ(P) satisfies the following.

Theorem (Halmos)

θ admits an unbiased estimator iff for some integer m there exists an

unbiased estimator of θ(P) based on X1, . . . ,Xm
iid∼ P that is, if there

exists a real-valued measurable function h(X1, ...,Xm) such that

θ = Eh(X1, . . . ,Xm).

The smallest integer m for which the above is true is called the degree

of θ(P).
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U statistics

• The function h may be taken to be a symmetric function of its

arguments.

• This is because if f (X1, . . . ,Xm) is an unbiased estimator of θ(P), so

is

h(X1, . . . ,Xm) :=

∑
π∈Πm f (Xπ1 , . . . ,Xπm )

m!

• For simplicity, we will assume h is symmetric for our notes.
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U Statistics (Due to Wassily Hoeffding in 1948)

Definition

Let Xi
iid∼ f , let h(x1, . . . , xr ) be a symmetric kernel function and

Θ(F ) = E [h(x1, . . . , xr )]. A U-statistic Un of order r is defined as

Un =

∑
{i1,...,ir }∈Ir h(Xi1

,Xi2
, . . . ,Xir )(n

r

) ,

where Ir is the set of subsets of size r from [n].
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Sample variance as an U-Statistic

Example

The sample variance is an U-statistic of order 2.

Proof.

Let θ(F ) = σ2.

n∑
i ̸=j

(Xi − Xj )
2 = 2n

∑
i

X2
i − 2

∑
i ,j

XiXj

= 2n
∑
i

X2
i − 2n2X̄2

= 2n(n − 1)

∑
i X

2
i − nX̄2

n − 1

Un :=

∑n
i<j (Xi − Xj )

2/2

n(n − 1)/2
= 2s2n
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Sample variance as U-statistic

• Is its expectation the variance?

• 1

2
E [(X1 − X2)

2] =
1

2
E(X1 − µ− (X2 − µ))2 = σ2
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U-statistics examples: Wilcoxon one sample rank statistic

Example

Un =
∑
i

Ri1(Xi > 0), where Ri is the rank of Xi in the sorted order

|X1| ≤ |X2| . . . .

• This is used to check if the distribution of Xi is symmetric around

zero.

• Assume Xi to be distinct.

• Ri =
n∑

j=1

1(|Xj | ≤ |Xi |)
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U-statistics examples: Wilcoxon one sample rank statistic

Example

Tn =
∑
i

Ri1(Xi > 0), where Ri is the rank of Xi in the sorted order

|X1| ≤ |X2| . . . .

Tn =
∑
i

Ri1(Xi > 0) =
n∑

i=1

n∑
j=1

1(|Xj | ≤ |Xi |)1(Xi > 0)

=
n∑

i=1

n∑
j=1

1(|Xj | ≤ Xi )1(Xi ̸= 0) =
n∑
i ̸=j

1(|Xj | < Xi ) +
n∑

i=1

1(Xi > 0)

=
∑
i<j

1(|Xj | < Xi ) +
∑
i<j

1(|Xi | < Xj ) +
n∑

i=1

1(Xi > 0)

=
∑
i<j

1(Xi + Xj > 0) +
n∑

i=1

1(Xi > 0) =

(
n

2

)
U2 + nU1

• Asymptotically dominated by the first term, which is an U statistic.

• Why isn’t it a U statistic?
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Kendal’s Tau

Example

Let P1 = (X1,Y1) and P2 = (X2,Y2) be two points. P1 and P2 are called

concordant if the line joining them (call this P1P2) has a positive slope

and discordant if it has a negative slope. Kendal’s tau is defined as:

τ := P(P1P2 has +ve slope)− P(P1P2 has -ve slope)

• This is very much like a correlation coefficient, i.e. lies between −1, 1

• Its zero when X ,Y are independent, and ±1 when Y = f (X ) is a

monotonically increasing (or decreasing) function.
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Kendal’s Tau

• Define h(P1,P2) =

1 If P1,P2 is concordant

−1 If P1,P2 is discordant

• Now define h(P1,P2) = sgn(X1 − X2)(Y1 − Y2)

• So U =

∑
i<j h(Pi ,Pj )(n

2

) is an U statistic which computes Kendals

Tau, and it has order 2.
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More novel examples

Example (Gini’s mean difference/ mean absolute deviation)

Let θ(F ) := E [|X1 − X2|]; the corresponding U statistic is

Un =

∑
i<j |xi − xj |(n

2

) .
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Properties of the U-statistic

• The U is for unbiased.

• Note that E [U] = Eh(X1, . . . ,Xr )

• var(U(X1, . . . ,Xn)) ≤ var(h(X1, . . . ,Xr )) (Rao Blackwell theorem)

• Just h(X1, . . . ,Xr ) is an unbiased estimator of θ(F ).

• But averaging over many subsets reduces variance.

12



Properties of U-statistics

• Let X(1) . . . ,X(n) denote the order statistics of the data.

• The empirical distribution puts 1/n mass on each data point.

• So we can think about the U statistic as

Un = E [h(X1, . . . ,Xr )|X(1), . . . ,X(n)]

• We also have:

E [(U − θ)2] = E

[(
E [h(X1, . . . ,Xr )− θ|X(1), . . . ,X(n)]

)2]
≤ E [E [(h(X1, . . . ,Xr )− θ)2|X(1), . . . ,X(n)]]

= var(h(X1, . . . ,Xr ))

• Rao-Blackwell theorem says that the conditional expectation of any

estimator given the sufficient statistic has smaller variance than the

estimator itself.

• For X1, . . . ,Xn
iid∼ P, the order statistics are sufficient. (why?)
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Concentration

• Consider a U statistic of order 2 U =

∑
i<j h(Xi ,Xj )(n

2

) .

• How does U concentrate around its expectation?

• Recall McDiarmid’s inequality?

Theorem

Let f : X n → R satisfy the following bounded difference condition

∀x1, . . . , xn, x
′
i ∈ X :

|f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)| ≤ Bi ,

then, P(|f (X )− E [f (X )]| ≥ t) ≤ 2 exp

(
− 2t2∑

i B
2
i

)
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Concentration

Consider a U statistic of order 2. U =

∑
i<j h(Xi ,Xj )(n

2

) .

Theorem

If |h(X1,X2)| ≤ B a.s., then,

P(|U − E [U]| ≥ t) ≤ 2 exp

(
− nt2

8B2

)
.
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Concentration

Proof.

• Consider two samples X ,X ′ which differ in the ith coordinate.

• We have:
|U(X )− U(X ′)| ≤

∑
j ̸=i |h(Xi ,Xj )− h(Xi ,X

′
j )|(n

2

)
≤ 4B

n

.

• Now we have:

P(|U − E [U]| ≥ t) ≤ 2 exp

(
− nt2

8B2

)
.
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Concentration

Now consider a U statistic of order r . U =

∑
i∈Ir h(Xi1

, . . . ,Xir )(n
r

) .

Theorem

If |h(Xi1
, . . . ,Xir )| ≤ B a.s., then,

P(|U − E [U]| ≥ t) ≤ 2 exp

(
− nt2

2r2B2

)
.
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Concentration

Proof.

• Consider two samples X ,X ′ which differ in the first coordinate.

• Let Ir−1 is the set of r − 1 subsets from 2, . . . , n.

• We have:

|U(X )− U(X ′)| ≤

∑
j∈Ir−1

|h(X1,Xj1
, . . . ,Xjr )− h(X1,X

′
j1
, . . . ,X ′

jr
)|(n

r

)
≤

2B
(n−1
r−1

)(n
r

) =
2rB

n

.

• Now we have:

P(|U − E [U]| ≥ t) ≤ 2 exp

(
− nt2

2r2B2

)
.
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Hoeffding’s bound from his 1963 paper

Now consider a U statistic of order r . U =

∑
i∈Ir h(Xi1

, . . . ,Xir )(n
r

) .

Theorem

If |h(Xi1
, . . . ,Xir )| ≤ B a.s., then,

P(|U − E [U]| ≥ t) ≤ 2 exp

(
−⌊n/r⌋t2

2B2

)
.

• What are we missing?
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Lets start with Markov

• First note that if I can write U − E [U] =
∑
i

piTi where
∑
i

pi = 1,

• Then,

P(U − E [U] ≥ t) ≤ E [exp(λ
∑
i

pi (Ti − t))]

≤
∑
i

piE [exp(λ(Ti − t))]

• So, if Ti is a sum of independent random variables, we can plug in

previous bounds into the above.

• But how can we write the U statistics as a sum of such Ti ’s?
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Lets do a bit of combinatorics

• For simplicity assume that n = kr .

• Write V (X1, . . . ,Xn) =
h(X1, . . . ,Xr ) + · · ·+ h(X(k−1)r+1, . . . ,Xkr ))

k

• Note that U =

∑
π∈Π V (Xπ1 , . . . ,Xπn )

n!
• So set Tπ = V (Xπ1 , . . . ,Xπn )− E [.].

• Since V is an average of k = n/r independent random variables,

using Hoeffding’s inequality we have

E [exp(λ(Ti − t))] ≤ exp(−λt + λ2B2/2k) ≤ exp(−kt2/2B2)

• Since each Vπ behave stochastically equivalently, we can take the λ

the same everywhere.
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Variance of U statistic

Next time!
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