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U Statistics

e We will see many interesting examples of U statistics.

e Interesting properties

e Unbiased
e Reduces variance
Concentration (via McDiarmid)

Asymptotic variance

Asymptotic distribution



An estimable parameter

e Let P be a family of probability measures on some arbitrary
measurable space.

e We will now define a notion of an an estimable parameter. (coined
“regular parameters” by Hoeffding.)

e An estimable parameter 6(P) satisfies the following.

Theorem (Halmos)

¢ admits an unbiased estimator iff for some integer m there exists an
unbiased estimator of O(P) based on Xi,...,Xm " p that is, if there
exists a real-valued measurable function h(Xq, ..., Xm) such that

0 = Eh(Xq, ..., Xm).

The smallest integer m for which the above is true is called the degree
of 6(P).



U statistics

e The function h may be taken to be a symmetric function of its
arguments.

e This is because if f(Xq,...,Xm) is an unbiased estimator of 6(P), so

IS

F(Xrqy.. X
h(X]_,...,Xm) = Zﬂ—énm ( 1 7Tm)

m!

e For simplicity, we will assume h is symmetric for our notes.



U Statistics (Due to Wassily Hoeffding in 1948)

Definition
Let X; i f, let h(xq,...,xr) be a symmetric kernel function and
O(F) = E[h(xq,...,xr)]. A U-statistic Un of order r is defined as

Z{ily,‘,7ir}€Ir h(Xil ’ Xf27 0oo 7Xir)
o 0 |
r

where Z; is the set of subsets of size r from [n].




Sample variance as an U-Statistic

Example

The sample variance is an U-statistic of order 2.

Proof.
Let 6(F) = o°.
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Sample variance as U-statistic

e |s its expectation the variance?

o SEIG — X0)P) = SEG — - (X — ) = 02



U-statistics examples: Wilcoxon one sample rank statistic

Example

Un=>_ Rj1(X; > 0), where R; is the rank of X; in the sorted order

I
[X1] < [Xa]. ...

e This is used to check if the distribution of X; is symmetric around
zero.

e Assume X; to be distinct.
n

o Ri=> 1(Xj| <IXi)
j=1



U-statistics examples: Wilcoxon one sample rank statistic

Example

Tn=>_ R1(X; > 0), where R; is the rank of X; in the sorted order

I
|X1] < |X2]. ...

To= 3RG> 0) = 30 310X < [XDLX; > 0)

i i=1j=1
n n n n

=D D 10X < XPUXG £0) =D 1(IXj] < X)) + D> 1(X; > 0)
i=1j=1 i#j i=1

=D 101X < X)) + > 1(1X] < X)) +Z (X; > 0)
i<j i<j

=> 1(X;+ X; >0) +Z 1(X; > 0) <g>U2+nU1

i<j =
e Asymptotically dominated by the first term, which is an U statistic.
e Why isn't it a U statistic?



Kendal’s Tau

Example

Let P; = (X7, Y1) and P, = (Xp, Y5) be two points. Py and P, are called
concordant if the line joining them (call this P;P5) has a positive slope
and discordant if it has a negative slope. Kendal's tau is defined as:

7 := P(P1 P> has +ve slope) — P(P1 P> has -ve slope)

e This is very much like a correlation coefficient, i.e. lies between —1,1

e Its zero when X, Y are independent, and +1 when Y = f(X) is a
monotonically increasing (or decreasing) function.



Kendal’s Tau

. 1 If P1, Py is concordant
e Define h(Py, Py) = Lr2
—1 If Py, Py is discordant

e Now define h(Py, Py) = sgn(Xq — Xo)(Y1 — Y2)

. h(P:, P;
e So U= M is an U statistic which computes Kendals

2
Tau, and it has order 2.
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More novel examples

Example (Gini’s mean difference/ mean absolute deviation)
Let O(F) := E[|X7 — Xo|]; the corresponding U statistic is
i<j 1Xi =%l

)

Un =
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Properties of the U-statistic

e The U is for unbiased.
e Note that E[U] = Eh(X1,..., Xr)
e var(U(Xq,...,Xn)) <var(h(Xy,...,Xr)) (Rao Blackwell theorem)

e Just h(Xi,...,X:) is an unbiased estimator of 6(F).
e But averaging over many subsets reduces variance.
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Properties of U-statistics

e Let X(1)...,X(p) denote the order statistics of the data.
e The empirical distribution puts 1/n mass on each data point.

e So we can think about the U statistic as
Un = E[A(X1, -, Xe) [ X (1) X()]
e We also have: )
E(U-0)=E {(E[h(Xl, LX) = 01Xy, ,x(,,)]) ]
< E[E[(h(X1, - Xr) = 071X (1), X))

=var(h(Xq,...,Xr))
e Rao-Blackwell theorem says that the conditional expectation of any
estimator given the sufficient statistic has smaller variance than the
estimator itself.

e For Xy,...,Xn "d b, the order statistics are sufficient. (why?)
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Concentration

> i<j h(Xi, X;)
(2) '

e How does U concentrate around its expectation?

e Consider a U statistic of order 2 U =

e Recall McDiarmid's inequality?

Theorem

Let f : X" — R satisfy the following bounded difference condition
Vxl,...,xn,x,{ e X:

/
[F(X1s s Xi— 1, Xis Xjg 1 -+ » Xn) — F(X1, .o, Xj—1, X}, Xj41,-- -, Xn)| < Bj,

then, P(f(X) — E[f(X)]| > t) < 2exp <_ 5:;)
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Concentration

>i<j h(Xi, X;)

(2)

Consider a U statistic of order 2. U =

Theorem
If |h(X1,X5)| < B a.s., then,

nt2
P(|U - E[U]| = t) < 2exp (—W> :
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Concentration

Proof.

e Consider two samples X, X" which differ in the ith coordinate.
(X, X:) — h(X;, X!

e We have: (’21)
4B
n

<

e Now we have:

nt’2
P(IU—E[U]] > t) < 2exp (—8B2> .
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Concentration

Siez, f(Xipo- - Xi)

(7)

Now consider a U statistic of order r. U =

Theorem
If1h(Xiy, ..., X))l < B a.s., then,

P(IU — E[U]| > t) < 2ex e
- 0T & 2r2B2 |-
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Concentration

Proof.

e Consider two samples X, X" which differ in the first coordinate.
e lLet Z,_q is the set of r — 1 subsets from 2,..., n.

e We have: , .
- ZjGIr_l ‘h(X17)<j1""7Xjr) - h(X17)<jl7"")<jr)|

()

U(X) = U(X")]

_2B(771) 28
ST a

e Now we have:

P(|U — E[U]| > t) < 2ex _ nt?
=Y =20® o2z )
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Hoeffding’s bound from his 1963 paper

>iez, (X5 Xip)

(7)

Now consider a U statistic of order r. U =

Theorem

If|h(X,-1,...,X,-r)\ < B a.s., then,

P(U - E[U]| 2 1) < 2exp (— L”{gf) :

e What are we missing?

10



Lets start with Markov

e First note that if | can write U — E[U] = Zp,-T,- where Zp,- =1,
e Then, I I
P(U — E[U] > t) < E[exp(A\ Y _ pi(T; — 1))]
i
<D pPiElexp(M(T; — 1))]
i
e So, if T; is a sum of independent random variables, we can plug in

previous bounds into the above.

e But how can we write the U statistics as a sum of such T;'s?
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Lets do a bit of combinatorics

e For simplicity assume that n = kr.
h(Xy,..., Xr) + -+ h(X(_ ey Xier)
o Write V(Xq,..., Xn) = ! p (k=1)r+1 i

V( Xy s X
e Note that U = 2nen V( ;:1 ™n)

e Soset Tr = V(Xry,..., Xrp) — E[].

e Since V is an average of k = n/r independent random variables,
using Hoeffding's inequality we have

Elexp(M(T; — £))] < exp(—At + \2B2/2k) < exp(—kt? /2B?)

e Since each Vi behave stochastically equivalently, we can take the A
the same everywhere.
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Variance of U statistic

Next time!

i)



