SDS 384 11: Theoretical Statistics

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
We will see many interesting examples of U statistics.

Interesting properties

- Unbiased (done)
- Reduces variance (done)
- Concentration (via McDiarmid) (done)
- Asymptotic variance
- Asymptotic distribution
Variance of U statistic

• Consider a U Statistic of order r.

\[U = \sum_{\{i_1, \ldots, i_r\} \in \mathcal{I}_r} h(X_{i_1}, \ldots, X_{i_r}) \binom{n}{r} \]

• Let $S, S' \in \mathcal{I}_r$.

\[
\text{var}(U) = \frac{1}{\binom{n}{r}^2} \sum_{S, S'} \text{cov}(h(X_S), h(X_{S'}))
\]

\[= \frac{1}{\binom{n}{r}^2} \sum_{c=0}^{r} \binom{n}{r} \binom{r}{c} \binom{n-r}{r-c} Y_c \xi_c, \]

• Assume that two subsets A, B have c elements in common.
• Y_c is the number of ways to choose A, choose the intersection $A \cap B$ and then choose the rest of B, i.e. $B \setminus A$.
• ξ_c will be defined now.
\begin{itemize}
 \item ξ_c is defined as $\text{cov}(h(X_S), h(X_{S'})).$
 \item Let $I := S \cap S'$ and $|I| = c$
 \[\xi_c := \text{cov}(h(X_S), h(X_{S'})) \]
 \[= \text{cov}(h(X_I, X_{S \setminus I}), h(X_I, X_{S' \setminus I})) \]
 \[= \text{cov}(E[h(X_I, X_{S \setminus I}|X_I)], E[h(X_I, X_{S' \setminus I}|X_I)]) \]
 \[+ E[\text{cov}(h(X_I, X_{S \setminus I}), h(X_I, X_{S' \setminus I})|X_I)] \]
 \[= \text{var}(E[h(X_I, X_{S \setminus I}|X_I)]) \geq 0 \]
\end{itemize}
Variance of U statistic

\[\text{var}(U) = \frac{1}{\binom{n}{r}^2} \sum_{c=0}^{r} \left(\binom{n}{r} \binom{r}{c} \binom{n-r}{r-c} \right) \xi_c \]

\[= \frac{1}{\binom{n}{r}^2} \sum_{c=0}^{r} \left(\binom{r}{c} \binom{n-r}{r-c} \right) \xi_c \]

\[= \sum_{c=1}^{r} \frac{r!^2}{c!(r-c)!^2} \frac{(n-r)\ldots(n-2r+c+1)}{n(n-1)\ldots(n-r+1)} \xi_c \]

\[= \sum_{c=1}^{r} \frac{r!^2}{c!(r-c)!^2} \frac{(n-r)^{r-c}}{n^r} \xi_c \]
Example

Let \(h(x, y) = (x - y)^2/2 \) and \(\theta = \sigma^2 \). The variance of the corresponding U statistics, aka the sample variance is given by \(\frac{\mu_4 - \sigma^4}{n} \), where \(\mu_4 := E[(X - \mu)^4] \).

- We will need \(\xi_1 \).
 \[
 \xi_1 := \text{cov}(h(X_1, X_2), h(X_1, X_3))
 \]
 \[
 = \text{cov}(E[h(X_1, X_2)|X_1], E[h(X_1, X_3)|X_1])
 \]
- We have \(E[h(X_1, X_2)|X_1] = E[(X_1 - X_2)^2|X_1]/2 = ((X_1 - \mu)^2 + \sigma^2)/2 \)
- So,
 \[
 \xi_1 := \frac{\text{var}(X_1 - \mu)^2}{4} = \frac{E(X_1 - \mu)^4 - \sigma^4}{4} = \frac{\mu_4 - \sigma^4}{4}
 \]
Example

Let $h(x, y) = xy$ and $\theta = \mu^2$. The variance of the corresponding U statistics, is given by $\frac{4\mu^2 \sigma^2}{n}$.

- $E[h(X_1, X_2)|X_1] = \mu X_1$
- $\xi_1 := \text{var}(E[h(X_1, X_2)|X_1]) = \mu^2 \sigma^2$
Theorem

If $E[h^2] < \infty$, we have

$$\sqrt{n}(U - \theta) \xrightarrow{d} N(0, r^2 \xi_1).$$

- We will prove this using Hajek Projections.
- What happens when the limiting variance is zero?
Recall the U statistics associated with the Wilcoxon signed rank test. The kernel is $h(x, y) = 1(x + y > 0)$ and the parameter estimated is $\theta = P(X_1 + X_2 > 0)$. Under the null hypothesis that the underlying distribution is continuous and symmetric about 0, we have

$$\sqrt{n}(U - 1/2) \xrightarrow{d} N(0, 1/3)$$

- Under the null, $\theta = P(X_1 + X_2 > 0) = 1/2$

$$\xi_1 = \text{cov}(h(X_1, X_2), h(X_1, X_3)) = P(X_1 + X_2 > 0, X_1 + X_3 > 0) - \theta^2$$

$$= P(X_1 > -X_2, X_1 > -X_3) - 1/4 = P(X_1 > X_2, X_1 > X_3) - 1/4$$

$$= 1/3 - 1/4 = 1/12$$
Example

Let $h(x, y) = xy$ and $\theta = \sigma^2$. Let $E[X^2] < \infty$. Then

$$\sqrt{n} \left(U - \mu^2 \right) \xrightarrow{d} N(0, 4\xi_1),$$

where $\xi_1 := \frac{\mu^2 \sigma^2}{n}$.

• Say $\mu = 0$. Now what?
• This is called a degenerate U statistics.
• The variance of it is now $O(1/n^2)$, since $\xi_1 = 0$
• But is there a distributional convergence?
Example

Let \(h(x, y) = xy \) and \(\theta = \sigma^2 \). Let \(E[X^2] < \infty \). Then

\[
\sqrt{n}(U - \mu^2) \xrightarrow{d} N(0, 4\xi_1), \text{ where } \xi_1 := \frac{\mu^2\sigma^2}{n}.
\]

\[
U = \frac{\sum_{i<j} X_iX_j}{\binom{n}{2}} = \frac{\sum_{i\neq j} X_iX_j}{n(n-1)}
\]

\[
= \frac{(\sum_i X_i)^2 - \sum_i X_i^2}{n(n-1)}
\]

\[
= \frac{(\sqrt{n}\bar{X}_n)^2 - \sum_i X_i^2/n}{n-1}
\]

\((n-1)U \xrightarrow{d} (Z^2 - 1)\sigma^2, \text{ where } Z \sim N(0, 1)\)
Next time!