
SDS 385: Stat Models for Big Data

Lecture 4a: starting with Ada-***

Purnamrita Sarkar

Department of Statistics and Data Science

The University of Texas at Austin

https://psarkar.github.io/teaching



Newton-Raphson

• We are optimizing f (β)

• Newton’s method uses second order information :

βt+1 = βt − [∇2f (βt)]
−1∇f (βt)

• Nice because

• Converges quicker than GD

• stepsize is 1

• Problematic because?

• Computationally expensive when p is large

• If you have a Nonconvex problem, Hessian does not have to be PSD.

• If I am doing βt+1 = βt − αG∇f (βt) and G is PSD, then I claim the

loss cannot increase for small α.
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Natural gradient

• Consider a model where you are interested in getting the MLE.

• You are minimizing − logP(X ;β)

• The Hessian is ∇2 − logP(X ;β)

• What is the expectation of this quantity at β∗, such that

X ∼ P(·;β∗)?

• −E [∇2 logP(X ;β∗)] = E [∇ logP(X ;β∗)∇ logP(X ;β∗)T ]

• why?
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Scalar case

∇ logP(X ;β∗) =
∇P(X ;β∗)
P(X ;β∗)

∇2 logP(X ;β∗) =
P(X ;β∗)∇2P(X ;β∗)−∇P(X ;β∗)2

P(X ;β∗)2

=
∇2P(X ;β∗)
P(X ;β∗)

− ∇P(X ;β∗)2

P(X ;β∗)2

E∇2 logP(X ;β∗) = −
(
∇ logP(X ;β∗)

)2

• Hope is that if we approximate the Hessian at w by
∑
t

gtg
T
t /T ,

where gt = ∇ logP(xt ;β), then if βt → β∗, then the approximation is

not too far off.
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So where does Adagrad (Duchi, Hazan, Singer 2011) fit in?

• Use feature specific training rates.

• Intuition : sparse features are more informative.

• Use the previous gradients to obtain feature specific training rate.
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Adagrad: simple quadratic

• The Hessian in the left panel is well conditioned, whereas in the

second it is very skewed.

• Adagrad (red trajectory) seems to be progressing faster in the

second.
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A picture from Duchi et al’s ISMP talk
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Regret bound

• Standard regret bound: [We did this in class last time!]

T∑
t=1

(
ft(βt)− ft(β

∗)
)
≤ 1

2α
‖β0 − β

∗‖2 +
α

2

∑
t

‖gt‖2

• Regret bound that adapts to the geometry:

T∑
t=1

(
ft(βt)− ft(β

∗)
)
≤ 1

2α
‖β0 − β

∗‖A
2 +

α

2

∑
t

gTt A−1gt

• Maholanobis distance: ‖x‖2A = xTAx
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In hindsight what A to choose?

• min
A

∑
t

gTt A−1gt , subject to A PSD, and trace of A is not too large.

• Solution: A = C

(∑
t

gtg
T
t

)1/2

• So at step t update Gt = Gt−1 + gtg
T
t

• Use βt+1 = βt − αG
−1/2
t gt
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Large dimensionality

• Cant do this for very large p

• Approximate with diagonal, aka

βt+1(j) = βt(j)− α
gt(j)√∑
i≤t g

2
i (j)

• Each feature has its own rate.

• If a feature is rare,
∑
i

g2i (j) in general will be small, and you will

weigh these more.
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Final pretty picture

• The notorious Rosenbrock function. (see Wikipedia page if you want

to know more).

f (x , y) = (a− x)2 + b(y − x2)2

• Global minima: a, a2.

• Quote from Wikipedia: The global minimum is inside a long,

narrow, parabolic shaped flat valley. To find the valley is trivial. To

converge to the global minimum, however, is difficult.
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Final pretty picture

• Adagrad (red) finds the valley faster.

• Yellow dot is global optima.
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ACK

• Duchi et al’s paper

• Duchi et al’s ISMP talk slides

• Sham Kakade’s lecture notes
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