SDS 385: Stat Models for Big Data
 Lecture 4a: starting with Ada-***

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Newton-Raphson

- We are optimizing $f(\beta)$
- Newton's method uses second order information :

$$
\beta_{t+1}=\beta_{t}-\left[\nabla^{2} f\left(\beta_{t}\right)\right]^{-1} \nabla f\left(\beta_{t}\right)
$$

- Nice because

Newton-Raphson

- We are optimizing $f(\beta)$
- Newton's method uses second order information :

$$
\beta_{t+1}=\beta_{t}-\left[\nabla^{2} f\left(\beta_{t}\right)\right]^{-1} \nabla f\left(\beta_{t}\right)
$$

- Nice because
- Converges quicker than GD
- stepsize is 1
- Problematic because?

Newton-Raphson

- We are optimizing $f(\beta)$
- Newton's method uses second order information :

$$
\beta_{t+1}=\beta_{t}-\left[\nabla^{2} f\left(\beta_{t}\right)\right]^{-1} \nabla f\left(\beta_{t}\right)
$$

- Nice because
- Converges quicker than GD
- stepsize is 1
- Problematic because?
- Computationally expensive when p is large
- If you have a Nonconvex problem, Hessian does not have to be PSD.
- If I am doing $\beta_{t+1}=\beta_{t}-\alpha G \nabla f\left(\beta_{t}\right)$ and G is PSD, then I claim the loss cannot increase for small α.

Natural gradient

- Consider a model where you are interested in getting the MLE.
- You are minimizing $-\log P(X ; \beta)$
- The Hessian is $\nabla^{2}-\log P(X ; \beta)$
- What is the expectation of this quantity at β^{*}, such that $X \sim P\left(\cdot ; \beta^{*}\right)$?

Natural gradient

- Consider a model where you are interested in getting the MLE.
- You are minimizing $-\log P(X ; \beta)$
- The Hessian is $\nabla^{2}-\log P(X ; \beta)$
- What is the expectation of this quantity at β^{*}, such that $X \sim P\left(\cdot ; \beta^{*}\right)$?
- $-E\left[\nabla^{2} \log P\left(X ; \beta^{*}\right)\right]=E\left[\nabla \log P\left(X ; \beta^{*}\right) \nabla \log P\left(X ; \beta^{*}\right)^{T}\right]$
- why?

Scalar case

$$
\begin{aligned}
\nabla \log P\left(X ; \beta^{*}\right) & =\frac{\nabla P\left(X ; \beta^{*}\right)}{P\left(X ; \beta^{*}\right)} \\
\nabla^{2} \log P\left(X ; \beta^{*}\right) & =\frac{P\left(X ; \beta^{*}\right) \nabla^{2} P\left(X ; \beta^{*}\right)-\nabla P\left(X ; \beta^{*}\right)^{2}}{P\left(X ; \beta^{*}\right)^{2}} \\
& =\frac{\nabla^{2} P\left(X ; \beta^{*}\right)}{P\left(X ; \beta^{*}\right)}-\frac{\nabla P\left(X ; \beta^{*}\right)^{2}}{P\left(X ; \beta^{*}\right)^{2}} \\
E \nabla^{2} \log P\left(X ; \beta^{*}\right) & =-\left(\nabla \log P\left(X ; \beta^{*}\right)\right)^{2}
\end{aligned}
$$

- Hope is that if we approximate the Hessian at w by $\sum_{t} g_{t} g_{t}^{T} / T$, where $g_{t}=\nabla \log P\left(x_{t} ; \beta\right)$, then if $\beta_{t} \rightarrow \beta^{*}$, then the approximation is not too far off.

So where does Adagrad (Duchi, Hazan, Singer 2011) fit in?

- Use feature specific training rates.
- Intuition : sparse features are more informative.
- Use the previous gradients to obtain feature specific training rate.

Adagrad: simple quadratic

- The Hessian in the left panel is well conditioned, whereas in the second it is very skewed.
- Adagrad (red trajectory) seems to be progressing faster in the second.

A picture from Duchi et al's ISMP talk

y_{t}	$\phi_{t, 1}$	$\phi_{t, 2}$	$\phi_{t, 3}$
1	1	0	0
-1	.5	0	1
1	-.5	1	0
-1	0	0	0
1	.5	0	0
-1	1	0	0
1	-1	1	0
-1	-.5	0	1

(1) Frequent, irrelevant
(2) Infrequent, predictive
(3) Infrequent, predictive

Regret bound

- Standard regret bound: [We did this in class last time!]

$$
\sum_{t=1}^{T}\left(f_{t}\left(\beta_{t}\right)-f_{t}\left(\beta^{*}\right)\right) \leq \frac{1}{2 \alpha}\left\|\beta_{0}-\beta^{*}\right\|^{2}+\frac{\alpha}{2} \sum_{t}\left\|g_{t}\right\|^{2}
$$

Regret bound

- Standard regret bound: [We did this in class last time!]

$$
\sum_{t=1}^{T}\left(f_{t}\left(\beta_{t}\right)-f_{t}\left(\beta^{*}\right)\right) \leq \frac{1}{2 \alpha}\left\|\beta_{0}-\beta^{*}\right\|^{2}+\frac{\alpha}{2} \sum_{t}\left\|g_{t}\right\|^{2}
$$

- Regret bound that adapts to the geometry:

$$
\sum_{t=1}^{T}\left(f_{t}\left(\beta_{t}\right)-f_{t}\left(\beta^{*}\right)\right) \leq \frac{1}{2 \alpha}\left\|\beta_{0}-\beta^{*}\right\|_{A}^{2}+\frac{\alpha}{2} \sum_{t} g_{t}^{T} A^{-1} g_{t}
$$

- Maholanobis distance: $\|x\|_{A}^{2}=x^{T} A x$

In hindsight what A to choose?

- $\min _{A} \sum_{t} g_{t}^{T} A^{-1} g_{t}$, subject to A PSD, and trace of A is not too large.

In hindsight what A to choose?

- $\min _{A} \sum_{t} g_{t}^{T} A^{-1} g_{t}$, subject to A PSD, and trace of A is not too large.
- Solution: $A=C\left(\sum_{t} g_{t} g_{t}^{T}\right)^{1 / 2}$

In hindsight what A to choose?

- $\min _{A} \sum_{t} g_{t}^{T} A^{-1} g_{t}$, subject to A PSD, and trace of A is not too large.
- Solution: $A=C\left(\sum_{t} g_{t} g_{t}^{T}\right)^{1 / 2}$
- So at step t update $G_{t}=G_{t-1}+g_{t} g_{t}^{T}$
- Use $\beta_{t+1}=\beta_{t}-\alpha G_{t}^{-1 / 2} g_{t}$

Large dimensionality

- Cant do this for very large p
- Approximate with diagonal, aka

$$
\beta_{t+1}(j)=\beta_{t}(j)-\alpha \frac{g_{t}(j)}{\sqrt{\sum_{i \leq t} g_{i}^{2}(j)}}
$$

Large dimensionality

- Cant do this for very large p
- Approximate with diagonal, aka

$$
\beta_{t+1}(j)=\beta_{t}(j)-\alpha \frac{g_{t}(j)}{\sqrt{\sum_{i \leq t} g_{i}^{2}(j)}}
$$

- Each feature has its own rate.
- If a feature is rare, $\sum_{i} g_{i}^{2}(j)$ in general will be small, and you will weigh these more.

Final pretty picture

- The notorious Rosenbrock function. (see Wikipedia page if you want to know more).

$$
f(x, y)=(a-x)^{2}+b\left(y-x^{2}\right)^{2}
$$

- Global minima: a, a^{2}.
- Quote from Wikipedia: The global minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial. To converge to the global minimum, however, is difficult.

Final pretty picture

- Adagrad (red) finds the valley faster.
- Yellow dot is global optima.

ACK

- Duchi et al's paper
- Duchi et al's ISMP talk slides
- Sham Kakade's lecture notes

