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Clustering

• Given n data points, we want to divide them into K groups such

that

• datapoints in a group are very similar to each other

• datapoints in two different groups are less similar

• But how to define similarity?

• Let us start with something very simple. We will use the Euclidean

distance as dis-similarity) between two points.
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k-means clustering

• The k-means loss is given by:

∑
k

∑
i∈Ck

‖xi − µk ‖
2

The kth cluster kth cluster center
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The algorithm

• Initialization: randomly

guess k cluster center.

Courtesy: Andrew W. Moore’s k-means

slides at CMU
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The algorithm

• Initialization: randomly

guess k cluster center.

• In each iteration, each point

finds out which cluster it is

closest to.

• Each cluster computes the

centroid of points belonging

to it

• Make those the new

centroids and continue.
Courtesy: Andrew W. Moore’s k-means

slides at CMU
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A video

https:
//miro.medium.com/max/335/1*JUm9BrH21dEiGpHg76AImw.gif
Courtest: Sunny K. Tuladhar
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So all is well?

• The k-means algorithm will converge to a local optima, not

necessarily a global one.

• A bad initialization may lead to a poor local optima.

Figure 1: Courtesy: https://www.geeksforgeeks.org/ml-k-means-algorithm/
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What if I give you funny looking clusters

Figure 2: Shi and Malik ‘00; Ng, Jordan, and Weiss NIPS ‘01]
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Spectral Clustering
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The graph partitioning view

Figure 3: David Sontag’s class notes
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The Spectral Clustering algorithm in Ng, Jordan and Weiss

• Given dataset x1, . . .xn first form the affinity or similarity matrix

A ∈ Rn×n such that Aij = exp(−‖xi −xj‖2/2σ
2), and set the diagonal

to zero.

• Let D be a diagonal matrix whose Dii = ∑
j

Aij . Construct

L = D−1/2AD−1/2

• Find the top K eigenvectors of L v1, . . .vK and build the matrix Y

with these along the columns.

• Normalize the rows of Y to have length 1.

• Treating rows of Y as data points in K dimensions, run k-means

with K clusters.

12



Try it out

• There are K Gaussians

• For each datapoint, you

first decide which Gaussian

it comes from by drawing

from a multinomial with

parameters (π1, . . . ,πK )

• If datapoint i comes from

center i , then generate it

from N(µi ,Σi )

• Goal: Given the data, figure

out which gaus-

sians/clusters/component it

came from, and their

parameters.

• K = 2

• π = (.5, .5)

• Spherical Gaussians
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Try it out

• Build the Kernel matrix and normalize it.
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What does it look like with s = .01

• What do you see? 15



What does it look like with s = .05

• What do you see?
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Look at the eigenvectors

• This is the representation using the eigenvectors without

normalization
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Look at the eigenvectors-post normalization

• This is the representation using the eigenvectors with normalization

• Perfect accuracy
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Wait, how do I measure accuracy or error

• Say you are given y1 and y2, two cluster assignments.

• You could do ∑
i

1(y1(i) 6= y2(i))

• Can you think for two minutes what is wrong with this?

• Well, clusterings are not identifiable up-to permutation.

• So the correct thing to do will be

min
π∈ΠK

1(π(y1(i)) 6= y2(i))

• Really costly when K is large, since we need to evaluate K !

permutations.

• You can use the Hungarian algorithm for mapping labels.
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Look at the eigenvectors

• This is the representation using the eigenvectors without

normalization
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Look at the eigenvectors-post normalization

• This is the representation using the eigenvectors with normalization
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Do k-means

• This is the result labeled with k-means with 2 clusters

• Perfect accuracy, so pretty robust with selection of s
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A tiny bit of theoretical insight

Figure 4: From Ng, Jordan, and Weiss 2001

• Consider an idealized setting, where there are no connections

between the three clusters, and all elements of diagonal blocks are

nonzero.

• Here after you normalize, for each of the smaller blocks there is

exactly one eigenvalue 1, and all eigenvalues are strictly smaller.

• Call this x̂
(i)
1
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A tiny bit of theoretical insight

Figure 5: From Ng, Jordan, and Weiss 2001

• Here padding the eigenvectors with zeros and then stacking them

gives us eigenvectors of the bigger matrix.

• We need to be a bit careful, because all these eigenvalues are 1, so

any 3 orthogonal vectors spanning this same subspace as the

columns of the above will be eigenvectors too.

24



A tiny bit of theoretical insight

Figure 6: From Ng, Jordan, and Weiss 2001

• R is a 3×3 orthogonal matrix, RTR = RRT = I

• When you normalize, all the points in cluster i get mapped to the ith

row of the orthogonal matrix R

• Typically, there will be some noise in the diagonal elements, and

hence, suitable conditions we will have “tight” clusters around k

well-separated points on the surface of the k sphere.
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Why do the first normalization

• The very large entries in K take over and the top eigenvectors do

not have any information about the cluster structure.
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