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e Given n data points, we want to divide them into K groups such
that

e datapoints in a group are very similar to each other
e datapoints in two different groups are less similar

e But how to define similarity?

e Let us start with something very simple. We will use the Euclidean
distance as dis-similarity) between two points.



k-means clustering

e The k-means loss is given by:
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The algorithm

= fuston’s Graghics Ad

e Initialization: randomly
guess k cluster center.

Courtesy: Andrew W. Moore's k-means
slides at CMU
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The algorithm

= Aton’s Graphicy ild

e Initialization: randomly
guess k cluster center.

e In each iteration, each point
finds out which cluster it is
closest to.

e Each cluster computes the
centroid of points belonging
to it

e Make those the new
Courtesy: Andrew W. Moore's k-means

centroids and continue. dlides at CMU



https:
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Courtest: Sunny K. Tuladhar
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So all is well?

e The k-means algorithm will converge to a local optima, not
necessarily a global one.
e A bad initialization may lead to a poor local optima.



So all is well?

e The k-means algorithm will converge to a local optima, not
necessarily a global one.

e A bad initialization may lead to a poor local optima.
Poor Clustering
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Figure 1: Courtesy: https://www.geeksforgeeks.org/ml-k-means-algorithm/



What if | give you funny looking clusters

K-means Spectral clustering

two circles, 2 clusters (K-maans) wocireles, 2 clusters
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Figure 2: Shi and Malik ‘00; Ng, Jordan, and Weiss NIPS ‘01]



Spectral Clustering

10



The graph partitioning view
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Figure 3: David Sontag's class notes
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The Spectral Clustering algorithm in Ng, Jordan and Weiss

e Given dataset xq,...xp first form the affinity or similarity matrix
A€ R"™ " such that Aj; = exp(—||x; — j||2/262), and set the diagonal
to zero.

e Let D be a diagonal matrix whose Dj; :ZA,-j. Construct
J

L=D"12ap1/2

e Find the top K eigenvectors of L vy,...vk and build the matrix Y
with these along the columns.

e Normalize the rows of Y to have length 1.

e Treating rows of Y as data points in K dimensions, run k-means
with K clusters.
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e There are K Gaussians

e For each datapoint, you

first decide which Gaussian
it comes from by drawing o8 . ‘3"':-‘
from a multinomial with
parameters (7, ...,7k) =

e |f datapoint i comes from

center i, then generate it I
from N(u;,%;) o K—2
e Goal: Given the data, figure —J ~ _ (.5,.5)
out which gaus-
sians/clustgrs/component T Spherical Gaussians
came from, and their

parameters.
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Try it out

from scipy.spatial.distance import pdist, sguareform
from sklearn import metrics
D=metrics.pairwise_distances(X,X)

s=.01

K=np.exp(-D**2/(2*5**2))

K=K-np.diag(np.diag(K))
Dl=np.diag(sum(K,axis=0)**(-.5))

K1=D1.dot (K).dot (D1

e Build the Kernel matrix and normalize it.
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What does it look like with s = .01
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e What do you see? 15



What does it look like with s = .05
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Look at the eigenvectors
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-0.25 —0.20 —0.15 -0.10 —0.05 0.00

e This is the representation using the eigenvectors without
normalization
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Look at the eigenvectors-post normalization

plt.scatter(ul(:,0], ulf:,1],c=y)

<matplotlib.collections.PathCollection at 0x18ab63bb0>
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e This is the representation using the eigenvectors with normalization

e Perfect accuracy
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Wait, how do | measure accuracy or error

e Say you are given y; and yp, two cluster assignments.
e You could do Y 1(y1 (i) # y2(i))
i

e Can you think for two minutes what is wrong with this?
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Wait, how do | measure accuracy or error

e Say you are given y; and yp, two cluster assignments.
e You could do Y 1(y1 (i) # y2(i))
i

e Can you think for two minutes what is wrong with this?
e Well, clusterings are not identifiable up-to permutation.

e So the correct thing to do will be
min 1(z(y1(/)) # y2(i))
7'L'€|_|K

e Really costly when K is large, since we need to evaluate K!
permutations.

e You can use the Hungarian algorithm for mapping labels.
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Look at the eigenvectors
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-0.074 -0.072 -0.070 -0.068 -0.066 —0.064 —-0.062

e This is the representation using the eigenvectors without

normalization
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Look at the eigenvectors-post normalization
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e This is the representation using the eigenvectors with normalization
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Do k-means

kmeans = cluster.KMeans(2).fit(ul)
plt.scatter(ul[:,0], ul[:,1],c=kmeans.labels_)

<matplotlib.collections.PathCollection at 0x19134£640>
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e This is the result labeled with k-means with 2 clusters

e Perfect accuracy, so pretty robust with selection of s
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ical insight
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Figure 4: From Ng, Jordan, and Weiss 2001

e Consider an idealized setting, where there are no connections
between the three clusters, and all elements of diagonal blocks are
nonzero.

e Here after you normalize, for each of the smaller blocks there is
exactly one eigenvalue 1, and all eigenvalues are strictly smaller.

o Call this "
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A tiny bit of theoretical insight
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Figure 5: From Ng, Jordan, and Weiss 2001

e Here padding the eigenvectors with zeros and then stacking them
gives us eigenvectors of the bigger matrix.

e We need to be a bit careful, because all these eigenvalues are 1, so
any 3 orthogonal vectors spanning this same subspace as the
columns of the above will be eigenvectors too.
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A tiny bit of theoretical insight
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Figure 6: From Ng, Jordan, and Weiss 2001

R

= O Oy

e Ris a 3x3 orthogonal matrix, RTR=RRT =1

e When you normalize, all the points in cluster / get mapped to the ith
row of the orthogonal matrix R

e Typically, there will be some noise in the diagonal elements, and
hence, suitable conditions we will have “tight” clusters around k
well-separated points on the surface of the k sphere.
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Why do the first normalization

u,s,vt=svd(X)

plt.scatter(u(:,0], u[:,1],c=y)

<matplotlib.collections.PathCollection at 0x18£055fd0>
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e The very large entries in K take over and the top eigenvectors do
not have any information about the cluster structure.
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