SDS 385: Stat Models for Big Data
 Lecture 12: PCA and random projections

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Principal Component Analysis - why

- Lots of high dimensional data:
- Documents - Can have about a million words.
- Recommender systems - If a datapoint is an user, there are around tens of thousands of movies
- Images - each image is represented using many pixel values - more for higher resolution

Principal Component Analysis - why

- Interpretation/visualization is difficult
- Storage and computation is difficult
- Many features are useless, and may lead to bad generalization error

Principal Component Analysis - why

- Interpretation/visualization is difficult
- Storage and computation is difficult
- Many features are useless, and may lead to bad generalization error
- Solution:
- Do feature selection
- Represent data as a linear combination of important features

Principal Component Analysis

- Goal: Find the direction of the most variance.
- Say X is the data matrix
- The average is $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
- Let $\tilde{x}_{i}=x_{i}-\bar{x}$

Principal Component Analysis

- Goal: Find the direction of the most variance.
- Say X is the data matrix
- The average is $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
- Let $\tilde{\boldsymbol{x}}_{i}=\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}$
- The sample variance of $\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)$ along a direction w is give by:

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\tilde{\boldsymbol{x}}_{i}^{T} w\right)^{2}
$$

- What is the sample variance of $\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ along a direction \boldsymbol{w} ?

Principal Component Analysis

First component

- So the first PC direction is:

$$
\boldsymbol{w}_{1}=\arg \max _{\|\boldsymbol{w}\|=1} \frac{1}{n} \sum_{i=1}^{n}\left(\tilde{\boldsymbol{x}}_{i}^{T} \boldsymbol{w}\right)^{2}
$$

- And the first PC component of \tilde{x}_{i} is $\tilde{\boldsymbol{x}}_{i}^{T} \boldsymbol{w}_{1}$

First component

- So the $k^{\text {th }} \mathrm{PC}$ direction is:

$$
\boldsymbol{w}_{k}=\arg \max _{\substack{\|\boldsymbol{w}\|=1 \\ \boldsymbol{w} \perp \boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k-1}}} \frac{1}{n} \sum_{i=1}^{n}\left(\tilde{\boldsymbol{x}}_{i}^{T} \boldsymbol{w}\right)^{2}
$$

- And the $k^{\text {th }}$ PC component of $\tilde{\boldsymbol{x}}_{i}$ is $\tilde{\boldsymbol{x}}_{i}^{T} \boldsymbol{w}_{k}$
- Note that $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}$ form an orthogonal basis.

Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}

Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}
- We can frame the optimization problem also as

$$
w_{1}=\arg \max _{\|\boldsymbol{w}\|=1} w^{T} \tilde{X}^{T} \tilde{X} w
$$

Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}
- We can frame the optimization problem also as

$$
w_{1}=\arg \max _{\|\boldsymbol{w}\|=1} w^{T} \tilde{X}^{T} \tilde{X}_{w}
$$

- This is the first eigenvector of $S=\tilde{X}^{T} \tilde{X}$

Eigenvector and eigenvalues

- Any square symmetrix matrix S has real eigenvalues
- The $i^{\text {th }}$ eigenvalue,vector pair satisfy $S w_{i}=\lambda_{i} w_{i}$
- The eigenvectors are orthogonal to each other, and normalized to have length 1.

Eigenvector and eigenvalues

- Any square symmetrix matrix S has real eigenvalues
- The $i^{\text {th }}$ eigenvalue,vector pair satisfy $S w_{i}=\lambda_{i} w_{i}$
- The eigenvectors are orthogonal to each other, and normalized to have length 1.
- In matrix terms, we can write:

$$
S=U \Sigma U^{T}, \text { where }
$$

- columns of U are the orgonal eigenvectors, and
- Σ is a diagonal matrix with eigenvalues on the diagonal
- The larger the magnitude of the eigenvalue, more important the eigenvector

Back to PCA: Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}

Back to PCA: Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}
- We can frame the optimization problem also as

$$
\boldsymbol{w}_{1}=\arg \max _{\|\boldsymbol{w}\|=1} w^{\top} \tilde{X}^{T} \tilde{X} w
$$

Back to PCA: Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}
- We can frame the optimization problem also as

$$
w_{1}=\arg \max _{\|\boldsymbol{w}\|=1} w^{T} \tilde{X}^{T} \tilde{X} w
$$

- This is the first eigenvector of $S=\tilde{X}^{T} \tilde{X}$

Back to PCA: Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}
- We can frame the optimization problem also as

$$
\boldsymbol{w}_{1}=\arg \max _{\|\boldsymbol{w}\|=1} w^{T} \tilde{X}^{T} \tilde{X} w
$$

- This is the first eigenvector of $S=\tilde{X}^{T} \tilde{X}$
- What is S ?

Back to PCA: Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}
- We can frame the optimization problem also as

$$
\boldsymbol{w}_{1}=\arg \max _{\|\boldsymbol{w}\|=1} w^{T} \tilde{X}^{T} \tilde{X} w
$$

- This is the first eigenvector of $S=\tilde{X}^{T} \tilde{X}$
- What is S ?
- Its the scalar multiple of the sample covariance matrix

$$
\hat{\Sigma}=\frac{1}{n} \sum_{i} \tilde{x}_{i} \tilde{x}_{i}^{T}=\frac{S}{n}
$$

Back to PCA: Simple algorithm

- Let W is a matrix with \boldsymbol{w}_{k} along its columns
- $\tilde{X} W$ gives a low dimensional representation of \tilde{X}
- We can frame the optimization problem also as

$$
\boldsymbol{w}_{1}=\arg \max _{\|\boldsymbol{w}\|=1} w^{T} \tilde{X}^{T} \tilde{X} w
$$

- This is the first eigenvector of $S=\tilde{X}^{T} \tilde{X}$
- What is S ?
- Its the scalar multiple of the sample covariance matrix

$$
\hat{\Sigma}=\frac{1}{n} \sum_{i} \tilde{x}_{i} \tilde{x}_{i}^{T}=\frac{S}{n}
$$

- So, all you have to do is to calculate eigenvectors of the covariance matrix.

Back to PCA: Simple algorithm

- So, all you have to do is to calculate eigenvectors of the covariance matrix.
- But, do I even need to do that?

Back to PCA: Simple algorithm

- So, all you have to do is to calculate eigenvectors of the covariance matrix.
- But, do I even need to do that?
- The right singular vectors of \tilde{X} is just fine.

Back to PCA: Simple algorithm

- So, all you have to do is to calculate eigenvectors of the covariance matrix.
- But, do I even need to do that?
- The right singular vectors of \tilde{X} is just fine.
- How many PC's? (more of a dissertaiton question)

Singular value decomposition

- The columns of U are orthogonal eigenvectos of $A A^{T}$
- The columns of V are orthogonal eigenvectos of $A^{T} A$
- $A^{T} A$ and $A A^{T}$ have the same eigenvalues

Second interpretation

- Minimum reconstruction error:

$$
\left(x_{i}-\left(x_{i}^{T} w\right) w\right)^{T}\left(x_{i}-\left(x_{i}^{T} w\right) w\right)=x_{i}^{T} x_{i}-\left(x_{i}^{T} w\right)^{2}
$$

- So, the first PC direction gives the direction projecting on which has the minimum reconstruction error.

Low rank approximation

- Take the centered data matrix \tilde{X} with SVD

$$
\tilde{x}=U S V^{\top}
$$

- Project on the top $k P C$'s $W \in \mathbb{R}^{p \times k}$

Low rank approximation

- Take the centered data matrix \tilde{X} with SVD

$$
\tilde{x}=U S V^{\top}
$$

- Project on the top k PC's $W \in \mathbb{R}^{p \times k}$
- You get $\tilde{X} W=U S_{k} V^{T}$, where S_{k} has zeroed out all singular values $\leq \sigma_{k}$

Low rank approximation

- Take the centered data matrix \tilde{X} with SVD

$$
\tilde{x}=U S V^{T}
$$

- Project on the top $k P C$'s $W \in \mathbb{R}^{p \times k}$
- You get $\tilde{X} W=U S_{k} V^{T}$, where S_{k} has zeroed out all singular values $\leq \sigma_{k}$
- So $W=\arg \min _{\operatorname{rank}(B)=k, B \in \mathbb{R}^{n \times p}}\|\tilde{X}-B\|_{F}^{2}$ and the reconstruction error is $\sum_{i=k+1}^{p} \sigma_{i}^{2}$

Low rank approximation

- Take the centered data matrix \tilde{X} with SVD

$$
\tilde{x}=U S V^{\top}
$$

- Project on the top $k P C$'s $W \in \mathbb{R}^{p \times k}$
- You get $\tilde{X} W=U S_{k} V^{T}$, where S_{k} has zeroed out all singular values $\leq \sigma_{k}$
- So $W=\arg \min _{\operatorname{rank}(B)=k, B \in \mathbb{R}^{n \times p}}\|\tilde{X}-B\|_{F}^{2}$ and the reconstruction error is $\sum_{i=k+1}^{p} \sigma_{i}^{2}$
- This explains why you want to take large k to reduce approx. error.

Lets do some coding

- We will make a covariance matrix and generate independent multivariate gaussian random variables

```
: d=1000
Sigma=np.zeros([d,d])
Sigma[0:200,0:200]=.3;
np.fill_diagonal(Sigma,1)
```


Lets do some coding

- We will make a covariance matrix and generate independent multivariate gaussian random variables
:

```
d=1000
Sigma=np.zeros([d,d])
Sigma[0:200,0:200]=.3;
np.fill_diagonal(Sigma,1)
```

: plt.matshow(Sigma)
: <matplotlib.image.AxesImage at $0 \times 188 \mathrm{c} 373 \mathrm{~d} 0>$

Lets do some coding

- Now lets compute eigenvectors of the covariance matrix.

```
X=np.random.multivariate_normal(np.zeros(d),sigma,5000)
```

```
S=np.cov(np.transpose(X))
u,s,vt=svd(S)
```


Lets do some coding

- Now lets compute eigenvectors of the covariance matrix.

```
X=np.random.multivariate_normal(np.zeros(d),sigma,5000)
```

```
S=np.cov(np.transpose(X))
u,s,vt=svd(S)
```

```
plot(u[:,0])
```

[<matplotlib.lines.Line2D at 0x167e5ae50>]

Lets do some coding

- Now lets do SVD on the data matrix X.

```
u,s,vt=svd(X)
```

```
plot(vt[0,:])
```

[<matplotlib.lines.Line2D at 0x1680810a0>]

Online PCA - Oja's algorithm

- Erikki Oja wrote a seminal paper in 1982 about a simple neural network model.
- He was inspired by the Hebbian principle (1949, "The organization of behavior", Donald Hebb) which claims that the synaptic energy increases from presynaptic cells stimulating post-synaptic cells.

Online PCA - Oja's algorithm

- For each data-point, you do:

$$
\begin{gathered}
w_{t+1} \leftarrow w_{t}+\eta_{t}\left(x_{t}^{T} w_{t}\right) x_{t} \\
w_{t+1} \leftarrow w_{t+1} /\left\|w_{t+1}\right\|
\end{gathered}
$$

Online PCA - Oja's algorithm

- For each data-point, you do:

$$
\begin{gathered}
w_{t+1} \leftarrow w_{t}+\eta_{t}\left(x_{t}^{T} w_{t}\right) x_{t} \\
w_{t+1} \leftarrow w_{t+1} /\left\|w_{t+1}\right\|
\end{gathered}
$$

- Note that here, you do not need to construct the covariance matrix explicitly, which is extremely useful, when d is much larger than n, i.e. in high dimensional settings.
- Step size η_{t} can be set as $c \log n / n$ or $\eta_{t} \propto 1 / t$
- Sharp error bounds show that the final solution converges to the principal component and the error has weak dependence on dimensionality d

Lets do some coding

- Now lets do Oja's algorithm for X.
- Set $\eta=0.001 \log n / n$

Dot product with truth

final vector

Lets do some coding

- Now lets do Oja's algorithm for X.
- Set $\eta=0.01 \log n / n$

Dot product with truth

final vector

Lets do some coding

- Now lets do Oja's algorithm for X.
- Set $\eta=0.1 \log n / n$

Dot product with truth

final vector

Lets do some coding

- Now lets do Oja's algorithm for X.
- Set $\eta=1 \log n / n$

Dot product with truth

final vector

Online PCA - Oja's algorithm - (thanks to Yijun Dong)

- Oja's algorithm maximizes $w^{T} \operatorname{cov}(X) w$ over $\|w\|=1$
- Why is it nonconvex?
- First, the constraint is non-convex.
- But you can change the optimization to do $\max _{\|w\| \leq 1} w^{T} \operatorname{cov}(X) w$ and $\operatorname{cov}(X)$ is PSD.
- Sure, but even then, you are maximizing a convex function here, not minimizing it.

Random projections

- What if we did something crazy and projected the data on a random vector.

$$
\tilde{x}_{i}=x_{i}^{T} R
$$

Random projections

- What if we did something crazy and projected the data on a random vector.

$$
\tilde{x}_{i}=x_{i}^{T} R
$$

- R could be Gaussian random variables:

$$
R_{i} \sim N(0,1)
$$

- R could be centered bernoullis:

$$
R_{i} \sim \begin{cases}1 & \text { with prob } 1 / 2 \\ -1 & \text { with prob } 1 / 2\end{cases}
$$

- R could be sparse

$$
R_{i} \sim \begin{cases}1 / \sqrt{s} & \text { with prob } 1 / 2 s \\ 0 & \text { with prob } 1-1 / s \\ -1 / \sqrt{s} & \text { with prob } 1 / 2 s\end{cases}
$$

Random projections

- Why will this work?
- Lets take a unit vector u and see if RP preserves the norm.
- Take d dimensional standard normal vector R

Random projections

- Why will this work?
- Lets take a unit vector u and see if RP preserves the norm.
- Take d dimensional standard normal vector R
- $Y=u^{T} R=\sum_{i} u_{i} R_{i} \sim N(0,1)$

Random projections

- Why will this work?
- Lets take a unit vector u and see if RP preserves the norm.
- Take d dimensional standard normal vector R
- $Y=u^{T} R=\sum_{i} u_{i} R_{i} \sim N(0,1)$
- $Y^{2} \sim \chi^{2}, E Y^{2}=1$

Random projections

- Why will this work?
- Lets take a unit vector u and see if RP preserves the norm.
- Take d dimensional standard normal vector R
- $Y=u^{T} R=\sum_{i} u_{i} R_{i} \sim N(0,1)$
- $Y^{2} \sim \chi^{2}, E Y^{2}=1$
- On an average the length is preserved

Random projections

- Why will this work?
- Lets take a unit vector u and see if RP preserves the norm.
- Take d dimensional standard normal vector R
- $Y=u^{T} R=\sum_{i} u_{i} R_{i} \sim N(0,1)$
- $Y^{2} \sim \chi^{2}, E Y^{2}=1$
- On an average the length is preserved
- But how about the variance?

Random projections

- Now take $R \in N(0,1)^{d \times m} / \sqrt{m}$

Random projections

- Now take $R \in N(0,1)^{d \times m} / \sqrt{m}$
- $u^{T} R=\left[u^{T} R(:, 1), \ldots u^{T} R(:, m)\right] / \sqrt{m}$

Random projections

- Now take $R \in N(0,1)^{d \times m} / \sqrt{m}$
- $u^{T} R=\left[u^{T} R(:, 1), \ldots u^{T} R(:, m)\right] / \sqrt{m}$

$$
\left\|u^{\top} R\right\|^{2}=\sum_{i}\left(u^{\top} R(:, i)\right)^{2} / m
$$

Average of m chi-squared RVs concentrates around 1

Johnson-Lindenstrauss lemma

- Take $u=\frac{X_{i}-X_{j}}{\left\|X_{i}-X_{j}\right\|}$, its norm will be preserved under a random projection, with high prob.
- We are saying, with high probability,

$$
(1-\epsilon)\left\|X_{i}-X_{j}\right\|_{2}^{2} \leq\left\|X_{i}^{T} R-X_{j}^{T} R\right\|_{2}^{2} \leq(1+\epsilon)\left\|X_{i}-X_{j}\right\|_{2}^{2}
$$

- If you pick $m=\log n / \epsilon^{2}$, then this will be satisfied for all pairs, with high probability.
- Draw 1000 dimensional Gaussians, 300 from origin and S as cov, 300 from all ones mean vector.

Pairwise distances

Pairwise distances with $k=20$

- Draw 1000 dimensional Gaussians, 300 from origin and S as cov, 300 from all ones mean vector.

Pairwise distances with $k=70$

Histogram of error

Acknowledgment

- Some pictures are borrowed from Brett Bernstein's notes from NYU.

