
SDS 385: Stat Models for Big Data

Lecture 12: PCA and random projections

Purnamrita Sarkar

Department of Statistics and Data Science

The University of Texas at Austin

https://psarkar.github.io/teaching



Principal Component Analysis - why

• Lots of high dimensional data:

• Documents - Can have about a million words.

• Recommender systems - If a datapoint is an user, there are around

tens of thousands of movies

• Images – each image is represented using many pixel values – more

for higher resolution

1



Principal Component Analysis - why

• Interpretation/visualization is difficult

• Storage and computation is difficult

• Many features are useless, and may lead to bad generalization error

• Solution:

• Do feature selection

• Represent data as a linear combination of important features

2



Principal Component Analysis - why

• Interpretation/visualization is difficult

• Storage and computation is difficult

• Many features are useless, and may lead to bad generalization error

• Solution:

• Do feature selection

• Represent data as a linear combination of important features

2



Principal Component Analysis

• Goal: Find the direction of the most variance.

• Say X is the data matrix

• The average is x̄xx =

∑n
i=1 xxx i
n

• Let x̃xx i = xxx i − x̄xx

• The sample variance of (x̃xx1, . . . , x̃xxn) along a direction w is give by:

1

n

n∑
i=1

(x̃xxTi w)2

• What is the sample variance of (xxx1, . . . ,xxxn) along a direction w?

3



Principal Component Analysis

• Goal: Find the direction of the most variance.

• Say X is the data matrix

• The average is x̄xx =

∑n
i=1 xxx i
n

• Let x̃xx i = xxx i − x̄xx

• The sample variance of (x̃xx1, . . . , x̃xxn) along a direction w is give by:

1

n

n∑
i=1

(x̃xxTi w)2

• What is the sample variance of (xxx1, . . . ,xxxn) along a direction w?

3



Principal Component Analysis

4



First component

• So the first PC direction is:

w1 = arg max
‖w‖=1

1

n

n∑
i=1

(x̃xxTi w)2

• And the first PC component of x̃xx i is x̃xxTi w1

5



First component

• So the kth PC direction is:

wk = arg max
‖w‖=1

w⊥w1,...,wk−1

1

n

n∑
i=1

(x̃xxTi w)2

• And the kth PC component of x̃xx i is x̃xxTi wk

• Note that w1, . . . ,wk form an orthogonal basis.

6



Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

7



Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

7



Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

7



Eigenvector and eigenvalues

• Any square symmetrix matrix S has real eigenvalues

• The ith eigenvalue,vector pair satisfy Sw i = λiw i

• The eigenvectors are orthogonal to each other, and normalized to

have length 1.

• In matrix terms, we can write:

S = UΣUT , where

• columns of U are the orgonal eigenvectors, and

• Σ is a diagonal matrix with eigenvalues on the diagonal

• The larger the magnitude of the eigenvalue, more important the

eigenvector

8



Eigenvector and eigenvalues

• Any square symmetrix matrix S has real eigenvalues

• The ith eigenvalue,vector pair satisfy Sw i = λiw i

• The eigenvectors are orthogonal to each other, and normalized to

have length 1.

• In matrix terms, we can write:

S = UΣUT , where

• columns of U are the orgonal eigenvectors, and

• Σ is a diagonal matrix with eigenvalues on the diagonal

• The larger the magnitude of the eigenvalue, more important the

eigenvector

8



Back to PCA: Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

• What is S?

• Its the scalar multiple of the sample covariance matrix

Σ̂ =
1

n

∑
i

x̃xx i x̃xx
T
i =

S

n

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

9



Back to PCA: Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

• What is S?

• Its the scalar multiple of the sample covariance matrix

Σ̂ =
1

n

∑
i

x̃xx i x̃xx
T
i =

S

n

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

9



Back to PCA: Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

• What is S?

• Its the scalar multiple of the sample covariance matrix

Σ̂ =
1

n

∑
i

x̃xx i x̃xx
T
i =

S

n

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

9



Back to PCA: Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

• What is S?

• Its the scalar multiple of the sample covariance matrix

Σ̂ =
1

n

∑
i

x̃xx i x̃xx
T
i =

S

n

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

9



Back to PCA: Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

• What is S?

• Its the scalar multiple of the sample covariance matrix

Σ̂ =
1

n

∑
i

x̃xx i x̃xx
T
i =

S

n

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

9



Back to PCA: Simple algorithm

• Let W is a matrix with wk along its columns

• X̃W gives a low dimensional representation of X̃

• We can frame the optimization problem also as

w1 = arg max
‖w‖=1

wT X̃T X̃w

• This is the first eigenvector of S = X̃T X̃

• What is S?

• Its the scalar multiple of the sample covariance matrix

Σ̂ =
1

n

∑
i

x̃xx i x̃xx
T
i =

S

n

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

9



Back to PCA: Simple algorithm

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

• But, do I even need to do that?

• The right singular vectors of X̃ is just fine.

• How many PC’s? (more of a dissertaiton question)

10



Back to PCA: Simple algorithm

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

• But, do I even need to do that?

• The right singular vectors of X̃ is just fine.

• How many PC’s? (more of a dissertaiton question)

10



Back to PCA: Simple algorithm

• So, all you have to do is to calculate eigenvectors of the covariance

matrix.

• But, do I even need to do that?

• The right singular vectors of X̃ is just fine.

• How many PC’s? (more of a dissertaiton question)

10



Singular value decomposition

• The columns of U are orthogonal eigenvectos of AAT

• The columns of V are orthogonal eigenvectos of ATA

• ATA and AAT have the same eigenvalues

11



Second interpretation

• Minimum reconstruction error:

(xxx i − (xxxTi w)w)T (xxx i − (xxxTi w)w) = xxxTi xxx i − (xxxTi w)2

• So, the first PC direction gives the direction projecting on which has

the minimum reconstruction error.

12



Low rank approximation

• Take the centered data matrix X̃ with SVD

X̃ = USVT

• Project on the top k PC’s W ∈ Rp×k

• You get X̃W = USkV
T , where Sk has zeroed out all singular values

≤ σk
• So W = arg min

rank(B)=k,B∈Rn×p
‖X̃ − B‖2F and the reconstruction

error is
p∑

i=k+1

σ2i

• This explains why you want to take large k to reduce approx. error.

13



Low rank approximation

• Take the centered data matrix X̃ with SVD

X̃ = USVT

• Project on the top k PC’s W ∈ Rp×k

• You get X̃W = USkV
T , where Sk has zeroed out all singular values

≤ σk

• So W = arg min
rank(B)=k,B∈Rn×p

‖X̃ − B‖2F and the reconstruction

error is
p∑

i=k+1

σ2i

• This explains why you want to take large k to reduce approx. error.

13



Low rank approximation

• Take the centered data matrix X̃ with SVD

X̃ = USVT

• Project on the top k PC’s W ∈ Rp×k

• You get X̃W = USkV
T , where Sk has zeroed out all singular values

≤ σk
• So W = arg min

rank(B)=k,B∈Rn×p
‖X̃ − B‖2F and the reconstruction

error is
p∑

i=k+1

σ2i

• This explains why you want to take large k to reduce approx. error.

13



Low rank approximation

• Take the centered data matrix X̃ with SVD

X̃ = USVT

• Project on the top k PC’s W ∈ Rp×k

• You get X̃W = USkV
T , where Sk has zeroed out all singular values

≤ σk
• So W = arg min

rank(B)=k,B∈Rn×p
‖X̃ − B‖2F and the reconstruction

error is
p∑

i=k+1

σ2i

• This explains why you want to take large k to reduce approx. error.

13



Lets do some coding

• We will make a covariance matrix and generate independent

multivariate gaussian random variables

14



Lets do some coding

• We will make a covariance matrix and generate independent

multivariate gaussian random variables

14



Lets do some coding

• Now lets compute eigenvectors of the covariance matrix.

15



Lets do some coding

• Now lets compute eigenvectors of the covariance matrix.

15



Lets do some coding

• Now lets do SVD on the data matrix X .

16



Online PCA - Oja’s algorithm

• Erikki Oja wrote a seminal paper in 1982 about a simple neural

network model.

• He was inspired by the Hebbian principle (1949, “The organization

of behavior”, Donald Hebb) which claims that the synaptic energy

increases from presynaptic cells stimulating post-synaptic cells.

17



Online PCA - Oja’s algorithm

• For each data-point, you do:

wt+1 ← wt + ηt(xTt wt)xt

wt+1 ← wt+1/‖wt+1‖

• Note that here, you do not need to construct the covariance matrix

explicitly, which is extremely useful, when d is much larger than n,

i.e. in high dimensional settings.

• Step size ηt can be set as c log n/n or ηt ∝ 1/t

• Sharp error bounds show that the final solution converges to the

principal component and the error has weak dependence on

dimensionality d

18



Online PCA - Oja’s algorithm

• For each data-point, you do:

wt+1 ← wt + ηt(xTt wt)xt

wt+1 ← wt+1/‖wt+1‖

• Note that here, you do not need to construct the covariance matrix

explicitly, which is extremely useful, when d is much larger than n,

i.e. in high dimensional settings.

• Step size ηt can be set as c log n/n or ηt ∝ 1/t

• Sharp error bounds show that the final solution converges to the

principal component and the error has weak dependence on

dimensionality d

18



Lets do some coding

• Now lets do Oja’s algorithm for X .

• Set η = 0.001 log n/n

Dot product with truth final vector

19



Lets do some coding

• Now lets do Oja’s algorithm for X .

• Set η = 0.01 log n/n

Dot product with truth final vector

20



Lets do some coding

• Now lets do Oja’s algorithm for X .

• Set η = 0.1 log n/n

Dot product with truth final vector

21



Lets do some coding

• Now lets do Oja’s algorithm for X .

• Set η = 1 log n/n

Dot product with truth final vector

22



Online PCA - Oja’s algorithm - (thanks to Yijun Dong)

• Oja’s algorithm maximizes wT cov(X )w over ‖w‖ = 1

• Why is it nonconvex?

• First, the constraint is non-convex.

• But you can change the optimization to do max
‖w‖≤1

wT cov(X )w and

cov(X ) is PSD.

• Sure, but even then, you are maximizing a convex function here, not

minimizing it.

23



Random projections

• What if we did something crazy and projected the data on a random

vector.

x̃i = xTi R

• R could be Gaussian random variables:

Ri ∼ N(0, 1)

• R could be centered bernoullis:

Ri ∼

1 with prob 1/2

−1 with prob 1/2

• R could be sparse

Ri ∼


1/
√
s with prob 1/2s

0 with prob 1− 1/s

−1/
√
s with prob 1/2s

24



Random projections

• What if we did something crazy and projected the data on a random

vector.

x̃i = xTi R

• R could be Gaussian random variables:

Ri ∼ N(0, 1)

• R could be centered bernoullis:

Ri ∼

1 with prob 1/2

−1 with prob 1/2

• R could be sparse

Ri ∼


1/
√
s with prob 1/2s

0 with prob 1− 1/s

−1/
√
s with prob 1/2s 24



Random projections

• Why will this work?

• Lets take a unit vector u and see if RP preserves the norm.

• Take d dimensional standard normal vector R

• Y = uTR =
∑
i

uiRi ∼ N(0, 1)

• Y 2 ∼ χ2, EY 2 = 1

• On an average the length is preserved

• But how about the variance?

25



Random projections

• Why will this work?

• Lets take a unit vector u and see if RP preserves the norm.

• Take d dimensional standard normal vector R

• Y = uTR =
∑
i

uiRi ∼ N(0, 1)

• Y 2 ∼ χ2, EY 2 = 1

• On an average the length is preserved

• But how about the variance?

25



Random projections

• Why will this work?

• Lets take a unit vector u and see if RP preserves the norm.

• Take d dimensional standard normal vector R

• Y = uTR =
∑
i

uiRi ∼ N(0, 1)

• Y 2 ∼ χ2, EY 2 = 1

• On an average the length is preserved

• But how about the variance?

25



Random projections

• Why will this work?

• Lets take a unit vector u and see if RP preserves the norm.

• Take d dimensional standard normal vector R

• Y = uTR =
∑
i

uiRi ∼ N(0, 1)

• Y 2 ∼ χ2, EY 2 = 1

• On an average the length is preserved

• But how about the variance?

25



Random projections

• Why will this work?

• Lets take a unit vector u and see if RP preserves the norm.

• Take d dimensional standard normal vector R

• Y = uTR =
∑
i

uiRi ∼ N(0, 1)

• Y 2 ∼ χ2, EY 2 = 1

• On an average the length is preserved

• But how about the variance?

25



Random projections

• Now take R ∈ N(0, 1)d×m/
√
m

• uTR = [uTR(:, 1), . . . uTR(:,m)]/
√
m

‖uTR‖2 =
∑
i

(uTR(:, i))2/m

Average of m chi-squared RVs

concentrates around 1

26



Random projections

• Now take R ∈ N(0, 1)d×m/
√
m

• uTR = [uTR(:, 1), . . . uTR(:,m)]/
√
m

‖uTR‖2 =
∑
i

(uTR(:, i))2/m

Average of m chi-squared RVs

concentrates around 1

26



Random projections

• Now take R ∈ N(0, 1)d×m/
√
m

• uTR = [uTR(:, 1), . . . uTR(:,m)]/
√
m

‖uTR‖2 =
∑
i

(uTR(:, i))2/m

Average of m chi-squared RVs

concentrates around 1

26



Johnson-Lindenstrauss lemma

• Take u =
Xi − Xj

‖Xi − Xj‖
, its norm will be preserved under a random

projection, with high prob.

• We are saying, with high probability,

(1− ε)‖Xi − Xj‖
2
2 ≤ ‖X

T
i R − XT

j R‖22 ≤ (1 + ε)‖Xi − Xj‖
2
2

• If you pick m = log n/ε2, then this will be satisfied for all pairs, with

high probability.

27



• Draw 1000 dimensional Gaussians, 300 from origin and S as cov,

300 from all ones mean vector.

Pairwise distances Pairwise distances with k = 20

28



• Draw 1000 dimensional Gaussians, 300 from origin and S as cov,

300 from all ones mean vector.

Pairwise distances with k = 70 Histogram of error

29



Acknowledgment

• Some pictures are borrowed from Brett Bernstein’s notes from NYU.

30


