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Principal Component Analysis - why

e Lots of high dimensional data:
e Documents - Can have about a million words.
e Recommender systems - If a datapoint is an user, there are around
tens of thousands of movies
e Images — each image is represented using many pixel values — more

for higher resolution
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e Interpretation/visualization is difficult
e Storage and computation is difficult

e Many features are useless, and may lead to bad generalization error



Principal Component Analysis - why

Interpretation /visualization is difficult

Storage and computation is difficult

Many features are useless, and may lead to bad generalization error

Solution:

e Do feature selection
e Represent data as a linear combination of important features
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e Goal: Find the direction of the most variance.

e Say X is the data matrix

n
i=1%i

n

The average is x =

] Letf(,-:x,-—f(



Principal Component Analysis

e Goal: Find the direction of the most variance.

e Say X is the data matrix

n
i=1%i

n

The average is x =

] Letf(,-:x,-—f(

The sample variance of (x1,...,%n) along a direction w is give by:

1, T 12
;E (;‘iW)
i=1

What is the sample variance of (xq,...,xn) along a direction w?



Principal Component Analysis
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First component

e So the first PC direction is:
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e And the first PC component of %; is i,-Twl



First component

e So the k" PC direction is:

1 .
w) = arg max = (xiTw)2
[lw|=1 n i=1
wlwy,. w4
th T
e And the k™' PC component of X; is X; w
e Note that wq,...,w, form an orthogonal basis.
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e The eigenvectors are orthogonal to each other, and normalized to
have length 1.



Eigenvector and eigenvalues

e Any square symmetrix matrix S has real eigenvalues
e The it eigenvalue,vector pair satisfy Sw; = \;w;

e The eigenvectors are orthogonal to each other, and normalized to
have length 1.

e In matrix terms, we can write:
-
S=UxU", where

e columns of U are the orgonal eigenvectors, and
e Y is a diagonal matrix with eigenvalues on the diagonal

e The larger the magnitude of the eigenvalue, more important the
eigenvector
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Back to PCA: Simple algorithm

e Let W is a matrix with w, along its columns

e XW gives a low dimensional representation of X
e We can frame the optimization problem also as
T)'ZT v

w1:arg|max w Xw

lwl=1

This is the first eigenvector of S = XTx
What is S7

Its the scalar multiple of the sample covariance matrix
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Back to PCA: Simple algorithm

e Let W is a matrix with w, along its columns

e XW gives a low dimensional representation of X
e We can frame the optimization problem also as
T)'ZT v

w1:arg|max w Xw

lwl=1

e This is the first eigenvector of S = X' X
e What is S?

e lIts the scalar multiple of the sample covariance matrix

e So, all you have to do is to calculate eigenvectors of the covariance
matrix.
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Back to PCA: Simple algorithm

So, all you have to do is to calculate eigenvectors of the covariance
matrix.

e But, do | even need to do that?

The right singular vectors of X is just fine.

e How many PC's? (more of a dissertaiton question)
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Singular value decomposition

A=U3V"
A BN

mxm| mxm|| Vis mxn

e The columns of U are orthogonal eigenvectos of AAT
e The columns of V are orthogonal eigenvectos of AT A

e AT A and AAT have the same eigenvalues

11



Second interpretation

vIxi)v

e Minimum reconstruction error:

(x; — (] wyw) T (x; = (x] wyw) = x] x; — (x] w)?

1

e So, the first PC direction gives the direction projecting on which has
the minimum reconstruction error.
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Low rank approximation

e Take the centered data matrix X with SVD
X=usv’

e Project on the top k PC's W € RP*K
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Low rank approximation

Take the centered data matrix X with SVD

X=usv’

Project on the top k PC's W € RP*K

You get XW = US v, where Sy has zeroed out all singular values

<ok

e So W =arg min X — BH%— and the reconstruction
rank(B)=k,BERMXP

P
error is Z a,-2
i=k+1

This explains why you want to take large k to reduce approx. error.
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Lets do some coding

e We will make a covariance matrix and generate independent
multivariate gaussian random variables

d=1000

Sigma=np.zeros([d,d])

Sigma[0:200,0:200]=.3;
np.£fill_diagonal(Sigma,l)

14



Lets do some coding

e We will make a covariance matrix and generate independent
multivariate gaussian random variables
i d=1000
Sigma=np.zeros([d,d])
Sigma[0:200,0:200]=.3;
np.£fill_diagonal(Sigma,l)
: plt.matshow(Sigma)
: <matplotlib.image.AxesImage at 0x188c373d0>

o 200 400 600 80O
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Lets do some coding

e Now lets compute eigenvectors of the covariance matrix.
: X=np.random.multivariate_normal(np.zeros(d),Sigma,5000)

: S=np.cov(np.transpose(X))
u,s,vt=svd(s)

15



Lets do some coding

e Now lets compute eigenvectors of the covariance matrix.
X=np.random.multivariate normal(np.zeros(d),Sigma,5000)

S=np.cov(np.transpose(X))
u,s,vt=svd(s)

plot(u[:,0])

[<matplotlib.lines.Line2D at 0x167e5ae50>]

—0.01 4

—0.02 4
—0.03 4
—0.04 1
—0.05 1

—0.06

T T T T
o 200 400 600 800 1000

15



Lets do some coding

e Now lets do SVD on the data matrix X.
u,s,vt=svd(X)

plot(vt[0,:])

[<matplotlib.lines.Line2D at 0x1680810a0>]
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Online PCA - Qja’s algorithm

e Erikki Oja wrote a seminal paper in 1982 about a simple neural
network model.

e He was inspired by the Hebbian principle (1949, “The organization
of behavior”, Donald Hebb) which claims that the synaptic energy
increases from presynaptic cells stimulating post-synaptic cells.

X4

Ve W
: Yy = 2XW;
S

Xq
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Online PCA - Qja’s algorithm

e For each data-point, you do:
-
Wil = we +ne(xe we)xe

Wil < Wepr/lIwegall
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Online PCA - Qja’s algorithm

e For each data-point, you do:
-
Wil = we +ne(xe we)xe

Wil < Wepr/lIwegall

e Note that here, you do not need to construct the covariance matrix
explicitly, which is extremely useful, when d is much larger than n,
i.e. in high dimensional settings.

e Step size n: can be set as clogn/n or ny o< 1/t

e Sharp error bounds show that the final solution converges to the
principal component and the error has weak dependence on
dimensionality d
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Lets do some coding

e Now lets do Oja’s algorithm for X.
e Set n=0.00llogn/n

plot(det_prod) plot(z)
[<matplotlib.lines.Line2D at 0x165092100>) [<matplotlib.lines.Line2D at 0x1679el100>]
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Lets do some coding

e Now lets do Oja’s algorithm for X.
e Set 7=0.0llogn/n

plot(z)
plot(dot_prod) [<matplotlib.lines.Line2D at 0x1679e1100>]
[<matplotlib.lines.Line2D at 0x168107130>]
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Lets do some coding

e Now lets do Oja’s algorithm for X.

e Set n=0.1logn/n

0

1000 2000 3000 4000 5000

Dot product with truth

0 200 400 600 800 1000

final vector

21



Lets do some coding

e Now lets do Oja’s algorithm for X.

e Set n=1logn/n

0.80 o100
s 0.075
070 o050
s 0025
060 0.000
055 -0.025
050 -0.050
045 -0.075
[ 1000 2000 3000 4000 5000 0 200 200 600 800 1000
Dot product with truth final vector
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Online PCA - Oja’s algorithm - (thanks to Yijun Dong

e Qja’s algorithm maximizes chov(X)w over |lw| =1
e Why is it nonconvex?
e First, the constraint is non-convex.
e But you can change the optimization to do Hml\ai( WTcov(X)W and
wl| <1
cov(X) is PSD.
e Sure, but even then, you are maximizing a convex function here, not

minimizing it.
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Random projections

e What if we did something crazy and projected the data on a random
vector.

24



Random projections

e What if we did something crazy and projected the data on a random
vector.

e R could be Gaussian random variables:
Ri ~ N(0,1)
e R could be centered bernoullis:

1 with prob 1/2
—1 with prob 1/2

Ri ~

e R could be sparse
1/4/s  with prob 1/2s
Ri~<0 with prob 1 —1/s
—1/4/s with prob 1/2s 24



Random projections

e Why will this work?
e Lets take a unit vector u and see if RP preserves the norm.

e Take d dimensional standard normal vector R
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Random projections
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Random projections

Why will this work?

Lets take a unit vector u and see if RP preserves the norm.

Take d dimensional standard normal vector R

Y=u"R=>"uR; ~N@O,1)

1

o Y2 % EY? =1
e On an average the length is preserved

But how about the variance?
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Random projections

o Now take R € N(0,1)7%™/\/m
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Random projections

o Now take R € N(0,1)7%™/\/m
o u'R=[u"R(:1),...u" R(:,m)]/v/m
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Random projections

o Now take R € N(0,1)7%™/\/m
o u'R=[u"R(:1),...u" R(:,m)]/v/m

T 2
luTRI? =" (u"R(, 1))?/m
i
Average of m chi-squared RVs

concentrates around 1
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Johnson-Lindenstrauss lemma

e Take u= its norm will be preserved under a random

Y]
1Xi = Xl
projection, with high prob.
e We are saying, with high probability,

2 T T o2 2
(1 =9lIX; = Xjll2 < IX;" R = X" Rll2 < (1 + )[1X; = Xjli2

e If you pick m = log n/ez, then this will be satisfied for all pairs, with
high probability.
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e Draw 1000 dimensional Gaussians, 300 from origin and S as cov,
300 from all ones mean vector.

Pairwise distances Pairwise distances with k = 20

28



e Draw 1000 dimensional Gaussians, 300 from origin and S as cov,
300 from all ones mean vector.

Pairwise distances with k = 70 Histogram of error
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