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Duality

• So far we were doing unconstrained optimization:

min
x

f0(x)

• Often you will need to add constraints:

min
x

f0(x) s.t. fi (x) ≤ 0, i = 1, . . . ,m

• Idea: turn this into an unconstrained optimization – how about

optimizing the following instead:

J(x) =

f0(x) if fi (x) ≤ 0, i = 1, . . . ,m

∞ otherwise
= f0(x) +

∑
i

I (fi (u))
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Penalty

• I (u) basically gives infinite penalty if u > 0

I (u) =

0 u ≤ 0

∞ u > 0

• Really messy formulation, non differentiable and discontinuous.
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Proximal methods

• So, replacing the infinite penalty with a linear function gives the

Lagrangian.

L(x , λ) = f0(x) +
∑
i

λi fi (x)

• So, if I maximize w.r.t λi , λi ≥ 0 I get J(x) – how?

• If the constraints are satisfied, then set λi = 0

• If the ith constraint is not satisfied, set λi =∞

• Recall I wanted to minimize J(x), so the problem becomes

min
x

max
λ

L(x , λ)

• Still tricky, but in many instances gets easier if we switch the order.
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Dual

• So optimize

max
λ

min
x

L(x , λ)︸ ︷︷ ︸
g(λ)

• g(λ) is the dual function.

• the maximization over λ is known as the dual problem

• Note that g(λ) is concave, why?

• Since it is a point wise maximum over affine functions.

• For a fixed x L(x , λ) is essentially a linear function of the λ′s
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Duality gap

• Remember λu ≤ I (u)

• So L(x , λ) ≤ J(x) for λ ≥ 0

• So g(λ) = min
x

L(x , λ) ≤ minxJ(x) = p∗ for λ ≥ 0

• So d∗ = max
λ≥0

g(λ) ≤ p∗

• So, solving the dual is like finding the tightest lower bound on p∗

• Strong duality: d∗ = p∗

• Holds if the optimization problem is convex, and a strictly feasible

point exists, i.e. all constraints are satisfied and the inequality

constraints are satisfied with strict inequalities.
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Example – thanks to Vasko Lalkov and Jingya Li

min(x21 + x22 )

s.t.x1 + x2 ≥ 4, x1, x2 ≥ 0

Use the lagrangian:

Λ(x1, x2, λ, ν1, ν2) = x21 + x22 + λ(4− x1 − x2)− ν1x1 − ν2x2

The dual is

g(λ, ν1, ν2) = min
x

Λ(x1, x2, λ, ν1, ν2) = 4λ+ min
x1

(x21 − λx1 − ν1x1) + min
x2

(x22 − λx2 − ν2x2)

We get 2x∗1 = λ+ ν1 and 2x∗2 = λ+ ν2. So,

g(λ, ν1, ν2) = 4λ− (λ+ ν1)2/4− (λ+ ν2)2/4
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Cont.

Now we want:

max
λ≥0,ν1≥0,ν2≥0

g(λ, ν1, ν2)

Taking a derivative w.r.t ν1, ν2 and set it to zero.

ν∗1 = ν∗2 = −λ∗ ⇒ ν∗1 = ν∗2 = 0

Taking a derivative w.r.t λ and set it to zero.

λ∗ = (4− ν∗1/2− ν∗2/2)⇒ λ∗ = 4

⇒ x∗1 = 2, x∗2 = 2
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Reading

Look at the fantastic writeup by David Knowles on “Lagrangian Duality

for Dummies”. I have linked this from the class website.
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