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e So far we were doing unconstrained optimization:
min fo(x)
e Often you will need to add constraints:

mXin fo(x) st. fi(x)<0,i=1,....m



e So far we were doing unconstrained optimization:
min fo(x)
e Often you will need to add constraints:

mXin fo(x) st. fi(x)<0,i=1,....m

e |dea: turn this into an unconstrained optimization — how about
optimizing the following instead:

J(x) = fo(x) if i(x)<0,i=1,...,m 0+ Z 1))

0 otherwise



e /(u) basically gives infinite penalty if u >0

0 u<O0
I(u) =

oo u>0

e Really messy formulation, non differentiable and discontinuous.
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Proximal methods

e So, replacing the infinite penalty with a linear function gives the
Lagrangian.

L(xX) = () + 2 Aifi(x)



Proximal methods

e So, replacing the infinite penalty with a linear function gives the
Lagrangian.

L(xX) = () + 2 Aifi(x)

e So, if | maximize w.r.t A\;,\; >0 | get J(x) — how?



Proximal methods

So, replacing the infinite penalty with a linear function gives the

Lagrangian.

L(xX) = () + 2 Aifi(x)

So, if | maximize w.r.t A;,A; >0 | get J(x) — how?

If the constraints are satisfied, then set \; =0

If the ith constraint is not satisfied, set A\; = oo



Proximal methods

So, replacing the infinite penalty with a linear function gives the

Lagrangian.

L(xX) = () + 2 Aifi(x)

So, if | maximize w.r.t A;,A; >0 | get J(x) — how?

If the constraints are satisfied, then set \; =0

If the ith constraint is not satisfied, set A\; = oo

Recall | wanted to minimize J(x), so the problem becomes

min max L(x, \)
X A

Still tricky, but in many instances gets easier if we switch the order.



e So optimize
max mXin L(x,\)
g(A)
e g()) is the dual function.

e the maximization over X is known as the dual problem
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So optimize

max min L(x, A)
XX

g(N)

g()) is the dual function.

the maximization over X\ is known as the dual problem

Note that g()) is concave, why?

Since it is a point wise maximum over affine functions.

e For a fixed x L(x, \) is essentially a linear function of the \'s
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Duality gap

Remember A\u < I(u)
So L(x,A) < J(x) for A >0
So g(\) = min L(x,\) < minxJ(x) = p* for A >0

So d* = A\) < p*
&nzaég()_p

So, solving the dual is like finding the tightest lower bound on p*

Strong duality: d* = p*

e Holds if the optimization problem is convex, and a strictly feasible
point exists, i.e. all constraints are satisfied and the inequality
constraints are satisfied with strict inequalities.



Example — thanks to Vasko Lalkov and Jingya Li

min(x12 +x22)
Stxy+xp > 4,x1,x >0

Use the lagrangian:
A(x1, X0, A, v1,9) = X5 + 53 + A4 — x1 — Xp) — v1x1 — VX
The dual is

g(A vy, v2) = minA(xq, x2, A v, v2) = 4A + Q}in(Xf —Axp —vixq) + rp(in(xg —Axp -
1 2

We get 2x{' = A+ v and 2x5 = A + 5. So,

g\ v1,v0) = 4X — (A +11)2 /4 — (A + 1) /4



Now we want:

max A\, V1,V
)\ZO,V]_ZO,V2ZOg( » V1 2)

Taking a derivative w.r.t v1,vo and set it to zero.
Vi =v5 = A" =1 =v5=0
Taking a derivative w.r.t X and set it to zero.

)\*:(4—1/f/2—1/§/2):>)\*:4

3xf:2,x§:2



Look at the fantastic writeup by David Knowles on “Lagrangian Duality
for Dummies”. | have linked this from the class website.



