SDS 385: Stat Models for Big Data
 Lecture 5a: Duality

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Duality

- So far we were doing unconstrained optimization:

$$
\min _{x} f_{0}(x)
$$

- Often you will need to add constraints:

$$
\min _{x} f_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leq 0, i=1, \ldots, m
$$

Duality

- So far we were doing unconstrained optimization:

$$
\min _{x} f_{0}(x)
$$

- Often you will need to add constraints:

$$
\min _{x} f_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leq 0, i=1, \ldots, m
$$

- Idea: turn this into an unconstrained optimization - how about optimizing the following instead:

$$
J(x)=\left\{\begin{array}{ll}
f_{0}(x) & \text { if } f_{i}(x) \leq 0, i=1, \ldots, m \\
\infty & \text { otherwise }
\end{array}=f_{0}(x)+\sum_{i} I\left(f_{i}(u)\right)\right.
$$

Penalty

- I(u) basically gives infinite penalty if $u>0$

$$
I(u)= \begin{cases}0 & u \leq 0 \\ \infty & u>0\end{cases}
$$

- Really messy formulation, non differentiable and discontinuous.

Proximal methods

- So, replacing the infinite penalty with a linear function gives the Lagrangian.

$$
L(x, \lambda)=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
$$

Proximal methods

- So, replacing the infinite penalty with a linear function gives the Lagrangian.

$$
L(x, \lambda)=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
$$

- So, if I maximize w.r.t $\lambda_{i}, \lambda_{i} \geq 0$ I get $J(x)$ - how?

Proximal methods

- So, replacing the infinite penalty with a linear function gives the Lagrangian.

$$
L(x, \lambda)=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
$$

- So, if I maximize w.r.t $\lambda_{i}, \lambda_{i} \geq 0$ I get $J(x)$ - how?
- If the constraints are satisfied, then set $\lambda_{i}=0$
- If the $i^{\text {th }}$ constraint is not satisfied, set $\lambda_{i}=\infty$

Proximal methods

- So, replacing the infinite penalty with a linear function gives the Lagrangian.

$$
L(x, \lambda)=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
$$

- So, if I maximize w.r.t $\lambda_{i}, \lambda_{i} \geq 0$ I get $J(x)$ - how?
- If the constraints are satisfied, then set $\lambda_{i}=0$
- If the $i^{\text {th }}$ constraint is not satisfied, set $\lambda_{i}=\infty$
- Recall I wanted to minimize $J(x)$, so the problem becomes

$$
\min _{x} \max _{\lambda} L(x, \lambda)
$$

- Still tricky, but in many instances gets easier if we switch the order.

Dual

- So optimize

$$
\max _{\lambda} \underbrace{\min _{x} L(x, \lambda)}_{g(\lambda)}
$$

- $g(\lambda)$ is the dual function.
- the maximization over λ is known as the dual problem

Dual

- So optimize

$$
\max _{\lambda} \underbrace{\min _{x} L(x, \lambda)}_{g(\lambda)}
$$

- $g(\lambda)$ is the dual function.
- the maximization over λ is known as the dual problem
- Note that $g(\lambda)$ is concave, why?

Dual

- So optimize

$$
\max _{\lambda} \underbrace{\min _{x} L(x, \lambda)}_{g(\lambda)}
$$

- $g(\lambda)$ is the dual function.
- the maximization over λ is known as the dual problem
- Note that $g(\lambda)$ is concave, why?
- Since it is a point wise maximum over affine functions.
- For a fixed $x L(x, \lambda)$ is essentially a linear function of the $\lambda^{\prime} s$

Duality gap

- Remember $\lambda u \leq I(u)$
- So $L(x, \lambda) \leq J(x)$ for $\lambda \geq 0$

Duality gap

- Remember $\lambda u \leq I(u)$
- So $L(x, \lambda) \leq J(x)$ for $\lambda \geq 0$
- So $g(\lambda)=\min _{x} L(x, \lambda) \leq \min _{x} J(x)=p^{*}$ for $\lambda \geq 0$

Duality gap

- Remember $\lambda u \leq I(u)$
- So $L(x, \lambda) \leq J(x)$ for $\lambda \geq 0$
- So $g(\lambda)=\min _{x} L(x, \lambda) \leq \min _{x} J(x)=p^{*}$ for $\lambda \geq 0$
- So $d^{*}=\max _{\lambda \geq 0} g(\lambda) \leq p^{*}$

Duality gap

- Remember $\lambda u \leq I(u)$
- So $L(x, \lambda) \leq J(x)$ for $\lambda \geq 0$
- So $g(\lambda)=\min _{x} L(x, \lambda) \leq \min _{x} J(x)=p^{*}$ for $\lambda \geq 0$
- So $d^{*}=\max _{\lambda \geq 0} g(\lambda) \leq p^{*}$
- So, solving the dual is like finding the tightest lower bound on p^{*}

Duality gap

- Remember $\lambda u \leq I(u)$
- So $L(x, \lambda) \leq J(x)$ for $\lambda \geq 0$
- So $g(\lambda)=\min _{x} L(x, \lambda) \leq \min _{x} J(x)=p^{*}$ for $\lambda \geq 0$
- So $d^{*}=\max _{\lambda \geq 0} g(\lambda) \leq p^{*}$
- So, solving the dual is like finding the tightest lower bound on p^{*}
- Strong duality: $d^{*}=p^{*}$
- Holds if the optimization problem is convex, and a strictly feasible point exists, i.e. all constraints are satisfied and the inequality constraints are satisfied with strict inequalities.

Example - thanks to Vasko Lalkov and Jingya Li

$$
\begin{aligned}
& \min \left(x_{1}^{2}+x_{2}^{2}\right) \\
& \text { s.t. } x_{1}+x_{2} \geq 4, x_{1}, x_{2} \geq 0
\end{aligned}
$$

Use the lagrangian:

$$
\Lambda\left(x_{1}, x_{2}, \lambda, \nu_{1}, \nu_{2}\right)=x_{1}^{2}+x_{2}^{2}+\lambda\left(4-x_{1}-x_{2}\right)-\nu_{1} x_{1}-\nu_{2} x_{2}
$$

The dual is
$g\left(\lambda, \nu_{1}, \nu_{2}\right)=\min _{x} \Lambda\left(x_{1}, x_{2}, \lambda, \nu_{1}, \nu_{2}\right)=4 \lambda+\min _{x_{1}}\left(x_{1}^{2}-\lambda x_{1}-\nu_{1} x_{1}\right)+\min _{x_{2}}\left(x_{2}^{2}-\lambda x_{2}-\right.$
We get $2 x_{1}^{*}=\lambda+\nu_{1}$ and $2 x_{2}^{*}=\lambda+\nu_{2}$. So,

$$
g\left(\lambda, \nu_{1}, \nu_{2}\right)=4 \lambda-\left(\lambda+\nu_{1}\right)^{2} / 4-\left(\lambda+\nu_{2}\right)^{2} / 4
$$

Cont.

Now we want:

$$
\max _{\lambda \geq 0, \nu_{1} \geq 0, \nu_{2} \geq 0} g\left(\lambda, \nu_{1}, \nu_{2}\right)
$$

Taking a derivative w.r.t ν_{1}, ν_{2} and set it to zero.

$$
\nu_{1}^{*}=\nu_{2}^{*}=-\lambda^{*} \quad \Rightarrow \nu_{1}^{*}=\nu_{2}^{*}=0
$$

Taking a derivative w.r.t λ and set it to zero.

$$
\begin{aligned}
& \lambda^{*}=\left(4-\nu_{1}^{*} / 2-\nu_{2}^{*} / 2\right) \Rightarrow \lambda^{*}=4 \\
& \Rightarrow x_{1}^{*}=2, x_{2}^{*}=2
\end{aligned}
$$

Reading

> Look at the fantastic writeup by David Knowles on "Lagrangian Duality for Dummies". I have linked this from the class website.

