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Background

• Has a long history–invented in 1970 by Jon Bentley

• k represents the number of dimensions

• Idea is to partition the data spatially, by using only one dimension at

any level.

• While searching, this helps pruning most of the search space.
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General idea

• Say you have some algorithm to decide which dimension to split on

and which value to split on (call this cut-val).

• Call this cut-dim (cutting dimension)

• Node in tree is described by (cut-dim, cut-val)

• So, to find a point, only need to compare the cutting dimension.
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Construct

• If there is one point, just form a leaf node

• Otherwise divide the points in half along the cutting axis

• Find the axis with the widest spread

• divide in alternative/round robin fashion

• recursively build kdtrees from each half

• Complexity dn log n
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Insert

4



Insert
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Insert
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Insert
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Find point with the smallest element in dimension a

• If cutdim at current node equals a,

• the min cannot be in the right subtree

• recurse on the left subtree

Base case: if there are no left children, stop and return current point.

• Otherwise

• the min could be in either

• recurse on both left and right subtrees
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Find point with the smallest element in dimension x
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Find point with the smallest element in dimension x
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Nearest neighbor queries

• Given point Q, find the closest point R

• Have to be careful, because its possible that two points are far away

in the tree but close in the Eucidean space.

• For each node store a bounding box

• Remember the closest point to Q seen so far (call this R’)

• Prune subtrees where bounding boxes cannot contain R’
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Nearest neighbor queries

• If circle overlaps with left subtree, search left subtree

• If circle overlaps with right subtree search right subtree

• Has been shown to work in about O(log n) time.
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NN search
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NN search
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NN search
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NN search
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NN search
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NN search
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NN search
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Timing vs tree size
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Timing vs dimensions

21



k-nearest neighbor with kd trees

• Algorithm 1: find nearest neighbor with above approach, report label

• Backtracking still takes time

• Algorithm 2: do approximate nearest neighbor, dont backtrack,

report label

• Still need to search brute force in the leaf node

• Algorithm 3: no brute force search. Can you tell me what to do?
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Curse of dimensionality

• What happens when you have high dimensional data?

• How about when data lies in a lower dimensional manifold?

• How to fix this?

• Projections?
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Ball trees

• Pick direction of most variability

• PCA?

• Fast algorithm:

• Pick point at random, call it X

• Pick point far away from X, call it Y

• Pick point far away from Y, call it Z

• Y − Z gives you a good proxy for the direction of most variability
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Ball trees

• Pick direction of most variability

• Project all points on that direction

• Split by median

• In each split

• Compute center

• Compute distance of center to furthest point

• Continue recursively
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Ball trees
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Ball tree search

• Traverse tree in depth first order

• Check if distance of pointx to current node B is smaller than

distance to current nearest neighbor (call this nx )

• If no, move on.

• If yes, and B is a leaf node, then find nearest neighbor in B, and

update the nearest neighbor nx

• If yes, and B is an internal node, recursively search both children of

node B. Search child whose center is closest, first.
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Ball tree search
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