
SDS 385: Stat Models for Big Data

Lecture 9: KD trees

Purnamrita Sarkar

Department of Statistics and Data Science

The University of Texas at Austin

https://psarkar.github.io/teaching



Background

• Has a long history–invented in 1970 by Jon Bentley

• k represents the number of dimensions

• Idea is to partition the data spatially, by using only one dimension at

any level.

• While searching, this helps pruning most of the search space.

1



General idea

• Say you have some algorithm to decide which dimension to split on

and which value to split on (call this cut-val).

• Call this cut-dim (cutting dimension)

• Node in tree is described by (cut-dim, cut-val)

• So, to find a point, only need to compare the cutting dimension.

2



Construct

• If there is one point, just form a leaf node

• Otherwise divide the points in half along the cutting axis

• Find the axis with the widest spread

• divide in alternative/round robin fashion

• recursively build kdtrees from each half

• Complexity dn log n

3



Insert

4



Insert

5



Insert

6



Insert

7



Find point with the smallest element in dimension a

• If cutdim at current node equals a,

• the min cannot be in the right subtree

• recurse on the left subtree

Base case: if there are no left children, stop and return current point.

• Otherwise

• the min could be in either

• recurse on both left and right subtrees

8



Find point with the smallest element in dimension x

9



Find point with the smallest element in dimension x

10



Nearest neighbor queries

• Given point Q, find the closest point R

• Have to be careful, because its possible that two points are far away

in the tree but close in the Eucidean space.

• For each node store a bounding box

• Remember the closest point to Q seen so far (call this R’)

• Prune subtrees where bounding boxes cannot contain R’

11



Nearest neighbor queries

• Given point Q, find the closest point R

• Have to be careful, because its possible that two points are far away

in the tree but close in the Eucidean space.

• For each node store a bounding box

• Remember the closest point to Q seen so far (call this R’)

• Prune subtrees where bounding boxes cannot contain R’

11



Nearest neighbor queries

• Given point Q, find the closest point R

• Have to be careful, because its possible that two points are far away

in the tree but close in the Eucidean space.

• For each node store a bounding box

• Remember the closest point to Q seen so far (call this R’)

• Prune subtrees where bounding boxes cannot contain R’

11



Nearest neighbor queries

• If circle overlaps with left subtree, search left subtree

• If circle overlaps with right subtree search right subtree

• Has been shown to work in about O(log n) time.

12



NN search

13



NN search

14



NN search

15



NN search

16



NN search

17



NN search

18



NN search

19



Timing vs tree size

20



Timing vs dimensions

21



k-nearest neighbor with kd trees

• Algorithm 1: find nearest neighbor with above approach, report label

• Backtracking still takes time

• Algorithm 2: do approximate nearest neighbor, dont backtrack,

report label

• Still need to search brute force in the leaf node

• Algorithm 3: no brute force search. Can you tell me what to do?

22



k-nearest neighbor with kd trees

• Algorithm 1: find nearest neighbor with above approach, report label

• Backtracking still takes time

• Algorithm 2: do approximate nearest neighbor, dont backtrack,

report label

• Still need to search brute force in the leaf node

• Algorithm 3: no brute force search. Can you tell me what to do?

22



k-nearest neighbor with kd trees

• Algorithm 1: find nearest neighbor with above approach, report label

• Backtracking still takes time

• Algorithm 2: do approximate nearest neighbor, dont backtrack,

report label

• Still need to search brute force in the leaf node

• Algorithm 3: no brute force search. Can you tell me what to do?

22



Curse of dimensionality

• What happens when you have high dimensional data?

• How about when data lies in a lower dimensional manifold?

• How to fix this?

• Projections?

23



Ball trees

• Pick direction of most variability

• PCA?

• Fast algorithm:

• Pick point at random, call it X

• Pick point far away from X, call it Y

• Pick point far away from Y, call it Z

• Y − Z gives you a good proxy for the direction of most variability

24



Ball trees

• Pick direction of most variability

• PCA?

• Fast algorithm:

• Pick point at random, call it X

• Pick point far away from X, call it Y

• Pick point far away from Y, call it Z

• Y − Z gives you a good proxy for the direction of most variability

24



Ball trees

• Pick direction of most variability

• PCA?

• Fast algorithm:

• Pick point at random, call it X

• Pick point far away from X, call it Y

• Pick point far away from Y, call it Z

• Y − Z gives you a good proxy for the direction of most variability

24



Ball trees

• Pick direction of most variability

• Project all points on that direction

• Split by median

• In each split

• Compute center

• Compute distance of center to furthest point

• Continue recursively

25



Ball trees

• Pick direction of most variability

• Project all points on that direction

• Split by median

• In each split

• Compute center

• Compute distance of center to furthest point

• Continue recursively

25



Ball trees

26



Ball tree search

• Traverse tree in depth first order

• Check if distance of pointx to current node B is smaller than

distance to current nearest neighbor (call this nx )

• If no, move on.

• If yes, and B is a leaf node, then find nearest neighbor in B, and

update the nearest neighbor nx

• If yes, and B is an internal node, recursively search both children of

node B. Search child whose center is closest, first.

27



Ball tree search

28



Acknowledgment

• The kdtrees animations were borrowed from

• Thinh Nguyen’s slides

• Carl Kingsford’s slides

• Andrew moore’s tutorial

29


