
SDS 385: Stat Models for Big Data

Lecture 1: Introduction

Purnamrita Sarkar

Department of Statistics and Data Science

The University of Texas at Austin

https://psarkar.github.io/teaching

Managerial Stuff

• Instructor- Purnamrita Sarkar

• Course material and homeworks will be posted under

https://psarkar.github.io/sds385.html

• Office hours: TBA. Welch Hall 5.228B

• TA: Rimli Sengupta

• Grading -

• 3-4 homeworks (30%), weekly paper presentation(40%), Take home

exam (30%)

• I will make a list of papers for presentation within a week. Please

start signing up. You need to do the presentations in groups of 2.

• Homeworks:

• Homeworks are due (every 2-3 weeks) before midnight on Sundays

via Canvas.

• All homeworks need to be typed up in latex.

1

https://psarkar.github.io/sds385.html

Managerial Stuff

If you are not feeling well and need to stay home,

• I will make sure whether we do things online or in person, the course

materials is always recorded.

2

Managerial Stuff

• Weekly presentation format:

• Wednesdays we will have presentations from a group of 2/3 students for

40-50 minutes, where each should present a significant part of the paper. The

presentation is worth 15% of the grade.

• After the presentation, there will be a breakout session discussing the paper.

This is 5% of the grade

• By midnight each Wednesday, all of you should submit a one page review of

the paper in question. The best way to do this would be to read the paper

before the class and start working on the review. This will be 20% of the

grade.
• The review should be single-spaced and one page. Very similar to a NeurIPS

review, I will look for three parts:

• Summarize the paper,

• Discuss the contribution (e.g., theoretical, methodological, algorithmic,

empirical contributions). For each contribution, briefly state the level of

significance (i.e., how much impact will this work have on researchers and

practitioners in the future?). If you cannot think of three things, please explain

why. Not all good papers will have three contributions),

• Discuss the strengths and weaknesses.

• (Don’t do:) say vague things, for example, ”the paper makes an important

contribution and is a very important piece of work because it has very nice

algorithms”

3

Prerequisites

• Linear algebra

• Undergrad probability

• Calculus

• And be comfortable with programming

• You can use any programming language of your choice

• R/Matlab/Python

4

What is big data?

• When algorithms with complexity O(n) becomes “intractable”.

• What is O(n)? We will do that in a sec.

• Take the simple method of matrix vector multiplication.

• You have a n × n matrix X , and a length n vector y .

• You want to compute the matrix vector product.

• How long does that take? O(n2) time.

• Say you have n = 1M. O(n2) is pretty bad!

• Even if you have n = 10K and the matrix vector product needs to be

computed often in the course of your algorithm, its bad!

5

What is big data?

• When algorithms with complexity O(n) becomes “intractable”.

• What is O(n)? We will do that in a sec.

• Take the simple method of matrix vector multiplication.

• You have a n × n matrix X , and a length n vector y .

• You want to compute the matrix vector product.

• How long does that take? O(n2) time.

• Say you have n = 1M. O(n2) is pretty bad!

• Even if you have n = 10K and the matrix vector product needs to be

computed often in the course of your algorithm, its bad!

5

What is big data?

• Even storage can be an issue.

• Say n = 1M and you need to compute nearest neighbors for KNN

classification.

• If you store the entire n × n distance matrix that requires O(n2)

storage. This may be too much.

• May need on-the-fly distance computations.

• Sometimes in Google/Facebook the data is so enormous that in

order to access neighbors of neighbors of an webpage or entity may

require communicating with another machine.

• Typically we want to store as much data as possible in RAM, since

disk seeks are more time consuming.

6

What is big data?

• Even storage can be an issue.

• Say n = 1M and you need to compute nearest neighbors for KNN

classification.

• If you store the entire n × n distance matrix that requires O(n2)

storage. This may be too much.

• May need on-the-fly distance computations.

• Sometimes in Google/Facebook the data is so enormous that in

order to access neighbors of neighbors of an webpage or entity may

require communicating with another machine.

• Typically we want to store as much data as possible in RAM, since

disk seeks are more time consuming.

6

Where else does the need for large scale learning come up

• Matrix inversion shows up in many estimation problems like

regression.

• Takes O(n3) time.

• How about linear solvers instead?

• Nearest neighbor computation shows up in KNN classification.

• Computing distances to n items O(np) time.

• Sorting these n − 1 numbers take about n log n time.

• How about approximate nearest neighbor methods and distance

preserving low dimensional transformations?

7

Where else does the need for large scale learning come up

• Matrix inversion shows up in many estimation problems like

regression.

• Takes O(n3) time.

• How about linear solvers instead?

• Nearest neighbor computation shows up in KNN classification.

• Computing distances to n items O(np) time.

• Sorting these n − 1 numbers take about n log n time.

• How about approximate nearest neighbor methods and distance

preserving low dimensional transformations?

7

Where else does the need for large scale learning come up

• Matrix inversion shows up in many estimation problems like

regression.

• Takes O(n3) time.

• How about linear solvers instead?

• Nearest neighbor computation shows up in KNN classification.

• Computing distances to n items O(np) time.

• Sorting these n − 1 numbers take about n log n time.

• How about approximate nearest neighbor methods and distance

preserving low dimensional transformations?

7

Where else does the need for large scale learning come up

• Matrix inversion shows up in many estimation problems like

regression.

• Takes O(n3) time.

• How about linear solvers instead?

• Nearest neighbor computation shows up in KNN classification.

• Computing distances to n items O(np) time.

• Sorting these n − 1 numbers take about n log n time.

• How about approximate nearest neighbor methods and distance

preserving low dimensional transformations?

7

Where else does the need for large scale learning come up

• Matrix inversion shows up in many estimation problems like

regression.

• Takes O(n3) time.

• How about linear solvers instead?

• Nearest neighbor computation shows up in KNN classification.

• Computing distances to n items O(np) time.

• Sorting these n − 1 numbers take about n log n time.

• How about approximate nearest neighbor methods and distance

preserving low dimensional transformations?

7

This class

How do you deal with Big data? We come up with ways of representing the data

in a more concise fashion.

• Look at the data one point at a time.

• Online algorithms

• Stochastic gradient descent, and various iterative optimization methods

• Divide and conquer: distributed algorithms

• Sampling based algorithms/ randomized algorithms

• Approximating matrix multiplication by row/column sampling

• Johnson Lindenstrauss Lemma and related fast projection methods

• Hashing and sketching (also extremely useful for nearest neighbor calculation)

• Sampling based methods for uncertainty estimation

• Bootstrap

• Subsampling

• Ranking methods

• Random walk based methods like Pagerank

• Semisupervised learning

• Manifold regularization

8

This class

How do you deal with Big data? We come up with ways of representing the data

in a more concise fashion.

• Look at the data one point at a time.

• Online algorithms

• Stochastic gradient descent, and various iterative optimization methods

• Divide and conquer: distributed algorithms

• Sampling based algorithms/ randomized algorithms

• Approximating matrix multiplication by row/column sampling

• Johnson Lindenstrauss Lemma and related fast projection methods

• Hashing and sketching (also extremely useful for nearest neighbor calculation)

• Sampling based methods for uncertainty estimation

• Bootstrap

• Subsampling

• Ranking methods

• Random walk based methods like Pagerank

• Semisupervised learning

• Manifold regularization

8

This class

How do you deal with Big data? We come up with ways of representing the data

in a more concise fashion.

• Look at the data one point at a time.

• Online algorithms

• Stochastic gradient descent, and various iterative optimization methods

• Divide and conquer: distributed algorithms

• Sampling based algorithms/ randomized algorithms

• Approximating matrix multiplication by row/column sampling

• Johnson Lindenstrauss Lemma and related fast projection methods

• Hashing and sketching (also extremely useful for nearest neighbor calculation)

• Sampling based methods for uncertainty estimation

• Bootstrap

• Subsampling

• Ranking methods

• Random walk based methods like Pagerank

• Semisupervised learning

• Manifold regularization

8

This class

How do you deal with Big data? We come up with ways of representing the data

in a more concise fashion.

• Look at the data one point at a time.

• Online algorithms

• Stochastic gradient descent, and various iterative optimization methods

• Divide and conquer: distributed algorithms

• Sampling based algorithms/ randomized algorithms

• Approximating matrix multiplication by row/column sampling

• Johnson Lindenstrauss Lemma and related fast projection methods

• Hashing and sketching (also extremely useful for nearest neighbor calculation)

• Sampling based methods for uncertainty estimation

• Bootstrap

• Subsampling

• Ranking methods

• Random walk based methods like Pagerank

• Semisupervised learning

• Manifold regularization

8

Order notations

• We define f (x) = O(g(x)) as x →∞ iff ∃M > 0 and x0 ∈ <, such

that |f (x)| ≤ M|g(x)| ∀x ≥ x0.

• Typically for this class, x will be n, the number of data points in

your dataset, and we will use the order notation when n→∞.

• For any task at hand, if you have an algorithm that runs in say g(n)

time, you say that the computation time is O(g(n)), since there

could be a faster algorithm than the one you have.

• There are also o Ω and ω notations, which we wouldn’t need very

much for this class.

9

Order notations

10

Big data examples

(A) (B)

Figure 1: (A) Image search (B) Reverse image search

• There are over a Billion images on the web.

• Each image is a high dimensional object

• There are possibly millions of categories of these images

• Instagram sees about 40M photos uploaded per day; its users give

8,500 likes and 1,000 comments per second.

• Whatsapp users share about 5B photos and 1B videos per day
11

Social Media

Figure 2: Fake news

• Whatsapp sees about 55B messages each day.

• Twitter sees 350K tweets sent per minute.

• How do we detect fake news when it is being forwarded by one user

to another?

• First challenge would be how to classify, since there are not too

many labeled news items. Even if you could figure out a way, how

will you scale it to this humongous downpour of data?
12

Big data: the good, the bad

• Pros:

• Most statistical consistency guarantees say that if number of

datapoints go to infinity, then one can learn the parameters with

high precision.

• So, arguably, if I give you a billion data points, then you can just run

a simple method and get a pretty good accuracy.

• Cons:

• How do you scale an existing algorithm to handle Billions of data

points, or data points arriving in a stream?

• As the number of datapoints grow, it is natural to assume that you

see more and more categories, and so classification and clustering

gets harder and harder!

13

Big data: the good, the bad

• Pros:

• Most statistical consistency guarantees say that if number of

datapoints go to infinity, then one can learn the parameters with

high precision.

• So, arguably, if I give you a billion data points, then you can just run

a simple method and get a pretty good accuracy.

• Cons:

• How do you scale an existing algorithm to handle Billions of data

points, or data points arriving in a stream?

• As the number of datapoints grow, it is natural to assume that you

see more and more categories, and so classification and clustering

gets harder and harder!

13

Big data: the ugly1

• As the number of datapoints grow, the number of features grow too.

So now we are looking at high dimensional data.

• So one can get an outpouring of false positives.

• Take Mike’s example: “if you live in Beijing, and you ride bike to

work, and you work in a certain job, and are a certain age – what’s

the probability you will have a certain disease or you will like my

advertisement?”

• Because of the many attributes, one may be able to predict any

outcome with zero error, just by chance.

• How to fix this? Well how about error bars? They will tell you

whether the outcome is actually surprising or not. Most learning

algorithms do not actually compute these.

1Michael I. Jordan’s “Why Big Data Could be a Big Fail” at spectrum.ieee.org

14

Big data: the ugly1

• As the number of datapoints grow, the number of features grow too.

So now we are looking at high dimensional data.

• So one can get an outpouring of false positives.

• Take Mike’s example: “if you live in Beijing, and you ride bike to

work, and you work in a certain job, and are a certain age – what’s

the probability you will have a certain disease or you will like my

advertisement?”

• Because of the many attributes, one may be able to predict any

outcome with zero error, just by chance.

• How to fix this? Well how about error bars? They will tell you

whether the outcome is actually surprising or not. Most learning

algorithms do not actually compute these.

1Michael I. Jordan’s “Why Big Data Could be a Big Fail” at spectrum.ieee.org

14

Big data: the ugly1

• As the number of datapoints grow, the number of features grow too.

So now we are looking at high dimensional data.

• So one can get an outpouring of false positives.

• Take Mike’s example: “if you live in Beijing, and you ride bike to

work, and you work in a certain job, and are a certain age – what’s

the probability you will have a certain disease or you will like my

advertisement?”

• Because of the many attributes, one may be able to predict any

outcome with zero error, just by chance.

• How to fix this? Well how about error bars? They will tell you

whether the outcome is actually surprising or not. Most learning

algorithms do not actually compute these.

1Michael I. Jordan’s “Why Big Data Could be a Big Fail” at spectrum.ieee.org

14

Big data: the ugly2

• And then the gem: “... if people use data and inferences they can

make with the data without any concern about error bars, about

heterogeneity, about noisy data, about the sampling pattern, about

all the kinds of things that you have to be serious about if you are

an engineer and a statistician – then you will make lots of

predictions, and there’s a good chance that you will occasionally

solve some real interesting problems. But you will occasionally have

some disastrously bad decisions. And you won’t know the difference

a priori. You will just produce these outputs and hope for the best.”

2Michael I. Jordan’s “Why Big Data Could be a Big Fail” at spectrum.ieee.org

15

Examples: Binary classification

1. Given n datapoints X1, . . . ,Xn ∈ Rd , and their labels

Y1, . . . ,Yn ∈ {0, 1}, output a decision function f : Rd → {0, 1}.

16

Methods-lets try kNN

• How do you create features for a document?

• Bag of words representation: each word is a feature and the value fij

is the term frequency of word i in document j .

• Often one uses tf-idf which is fij logN/ni where N is the total

number of documents and ni is the number of documents where

word i appears.

• This gives less weight to words that are very frequent across all

documents.

• Say Xi is in RV where V is the size of vocabulary.

• How will you do k-NN classification?

17

Methods-lets try kNN

• How do you create features for a document?

• Bag of words representation: each word is a feature and the value fij

is the term frequency of word i in document j .

• Often one uses tf-idf which is fij logN/ni where N is the total

number of documents and ni is the number of documents where

word i appears.

• This gives less weight to words that are very frequent across all

documents.

• Say Xi is in RV where V is the size of vocabulary.

• How will you do k-NN classification?

17

Methods-lets try kNN

• How do you create features for a document?

• Bag of words representation: each word is a feature and the value fij

is the term frequency of word i in document j .

• Often one uses tf-idf which is fij logN/ni where N is the total

number of documents and ni is the number of documents where

word i appears.

• This gives less weight to words that are very frequent across all

documents.

• Say Xi is in RV where V is the size of vocabulary.

• How will you do k-NN classification?

17

Methods-lets try kNN

• How do you create features for a document?

• Bag of words representation: each word is a feature and the value fij

is the term frequency of word i in document j .

• Often one uses tf-idf which is fij logN/ni where N is the total

number of documents and ni is the number of documents where

word i appears.

• This gives less weight to words that are very frequent across all

documents.

• Say Xi is in RV where V is the size of vocabulary.

• How will you do k-NN classification?

17

Methods-lets try kNN

• Compute distance to all other datapoints.

• Each distance computation takes

• O(V) time.

• N distance computations take

• O(NV) time.

• k-nearest neighbors take O(N logN) time.

• O(N logN) time.

• So, all in all O(N logN + NV) time.

• Goodreads has about 2B books, vocabulary size could be 104.

• If each multiplication or addition took 10−12 seconds, then the

nearest neighbor computation would take about 30 seconds.

18

Methods-lets try kNN

• Compute distance to all other datapoints.

• Each distance computation takes

• O(V) time.

• N distance computations take

• O(NV) time.

• k-nearest neighbors take O(N logN) time.

• O(N logN) time.

• So, all in all O(N logN + NV) time.

• Goodreads has about 2B books, vocabulary size could be 104.

• If each multiplication or addition took 10−12 seconds, then the

nearest neighbor computation would take about 30 seconds.

18

How to fix this- mock run

• Use sparsity, even though the vocabulary size is huge, not all words

are used in every document, i.e. the input data vectors are sparse.

• Try dimensionality reduction: use SVD or random projections or

feature selection

• Try cleverer ways of computing nearest neighbors, so that you

only compute distances to “potential” nearest neighbors, not all

points – Locality sensitive hashing, KD-trees, cover trees

19

Multiclass classification

• Given n datapoints X1, . . . ,Xn ∈ Rd , and their labels

Y1, . . . ,Yn ∈ {0, 1, . . . ,K − 1}, output a decision function

f : Rd → {0, 1, . . . ,K − 1}.

• In document classification, you would have multiple categories, these

categories can also have hierarchical structure.

• Goodreads has about 1K categories of books and about 2B books.

• Traditionally one would train K one-vs-all binary classifiers. If one

classifier took 30s, training 1K classifiers would take about 8 hours.

20

Multiclass classification

• Given n datapoints X1, . . . ,Xn ∈ Rd , and their labels

Y1, . . . ,Yn ∈ {0, 1, . . . ,K − 1}, output a decision function

f : Rd → {0, 1, . . . ,K − 1}.

• In document classification, you would have multiple categories, these

categories can also have hierarchical structure.

• Goodreads has about 1K categories of books and about 2B books.

• Traditionally one would train K one-vs-all binary classifiers. If one

classifier took 30s, training 1K classifiers would take about 8 hours.

20

Multiclass classification

• Given n datapoints X1, . . . ,Xn ∈ Rd , and their labels

Y1, . . . ,Yn ∈ {0, 1, . . . ,K − 1}, output a decision function

f : Rd → {0, 1, . . . ,K − 1}.

• In document classification, you would have multiple categories, these

categories can also have hierarchical structure.

• Goodreads has about 1K categories of books and about 2B books.

• Traditionally one would train K one-vs-all binary classifiers. If one

classifier took 30s, training 1K classifiers would take about 8 hours.

20

How about unsupervised learning– Recommender systems

21

Random walk based methods

• Goal: to return top K movie recommendations for an user

• Think of netflix as a bipartite graph of users and movies.

• You may want to compute personalized pagerank from this user to

all movies.

• Pagerank computation is basically computing a second eigenvector

of a matrix.

• Computing it naively may take O(nnz) time optimistically, where nnz

is the number of non-zero entries in the matrix.

• Netflix has about 1B users and about 10K shows.

• If an user has watched about 1000 shows, then there are roughly

1000B non-zero entries in this network.

22

Random walk based methods

• Goal: to return top K movie recommendations for an user

• Think of netflix as a bipartite graph of users and movies.

• You may want to compute personalized pagerank from this user to

all movies.

• Pagerank computation is basically computing a second eigenvector

of a matrix.

• Computing it naively may take O(nnz) time optimistically, where nnz

is the number of non-zero entries in the matrix.

• Netflix has about 1B users and about 10K shows.

• If an user has watched about 1000 shows, then there are roughly

1000B non-zero entries in this network.

22

Random walk based methods

• Goal: to return top K movie recommendations for an user

• Think of netflix as a bipartite graph of users and movies.

• You may want to compute personalized pagerank from this user to

all movies.

• Pagerank computation is basically computing a second eigenvector

of a matrix.

• Computing it naively may take O(nnz) time optimistically, where nnz

is the number of non-zero entries in the matrix.

• Netflix has about 1B users and about 10K shows.

• If an user has watched about 1000 shows, then there are roughly

1000B non-zero entries in this network.

22

Random walk based methods- challenges

• Computing an eigen-decomposition of such a large matrix is time

consuming.

• In fact if one FLOP takes 10−12 seconds, then one power iteration

would take about 1 second.

• If we do about 10 iterations to get an approximate solution, thats

10s right there.

• If you compute recommendations for one-percent of users, then 1200

years.

• Not a good idea, since the network is also changing often, so if there

are new ratings, you will need to recompute everything again.

• What can we do: caching tricks, local algorithms, randomized

algorithms for matrix vector multiplications.

23

Random walk based methods- challenges

• Computing an eigen-decomposition of such a large matrix is time

consuming.

• In fact if one FLOP takes 10−12 seconds, then one power iteration

would take about 1 second.

• If we do about 10 iterations to get an approximate solution, thats

10s right there.

• If you compute recommendations for one-percent of users, then 1200

years.

• Not a good idea, since the network is also changing often, so if there

are new ratings, you will need to recompute everything again.

• What can we do: caching tricks, local algorithms, randomized

algorithms for matrix vector multiplications.

23

Random walk based methods- challenges

• Computing an eigen-decomposition of such a large matrix is time

consuming.

• In fact if one FLOP takes 10−12 seconds, then one power iteration

would take about 1 second.

• If we do about 10 iterations to get an approximate solution, thats

10s right there.

• If you compute recommendations for one-percent of users, then 1200

years.

• Not a good idea, since the network is also changing often, so if there

are new ratings, you will need to recompute everything again.

• What can we do: caching tricks, local algorithms, randomized

algorithms for matrix vector multiplications.

23

24

