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Ranking and Pagerank

• Goal: obtain a ranking of webpages which are connected via

hyperlinks

• Hope: webpages pointed to by other “important” webpages are also

important.

• Developed by Brin and Page (1999)

• Many subsequent works:

• HITS (Kleinberg, 1998)

• Pagerank (Page and Brin, 1998)
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Definitions

• n × n Adjacency matrix A

• Aij = weight on an edge from i to j

• If graph is undirected A(i , j) = A(j , i)

• n × n Probability transition matrix P

• P has rows summing to one, i.e. row stochastic

• P(i , j) is the probability that a random walker will step on j from i .

• P(i , j) =
A(i , j)∑
j A(i , j)

• n × n Laplacian matrix L

• L = D − A, where D is the diagonal matrix of degrees

• It is symmetric positive semidefinite for undirected graphs.

• Singular, i.e. has a zero eigenvalue
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Definition
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Random walks
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Random walks
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Random walks
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Random walks
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Probability Distributions

• xt(i) denotes the probability that the surfer is at node i at time t.

xt+1(i) =
∑
j

xt(j)P(j , i)

xTt+1 = xTt P = xTt−1P
2 = · · · = xT0 Pt

• What happens if the surfer keeps walking for a long time?
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Stationary Distribution

• When the surfer keeps walking for a long time

• When the distribution does not change anymore i.e. xT+1 = xT

• For “well-behaved” graphs this does not depend on the start

distribution!!
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Stationary distribution

• The stationary distribution at a node is related to the amount of

time a random walker spends visiting that node.

• Remember that we can write the probability distribution at a node as

xTt+1 = xTt P

• For the stationary distribution v0 we have

vT0 = vT0 P

• Whoa! that’s just the left eigenvectorof the transition matrix !

10



Stationary distribution

• The stationary distribution at a node is related to the amount of

time a random walker spends visiting that node.

• Remember that we can write the probability distribution at a node as

xTt+1 = xTt P

• For the stationary distribution v0 we have

vT0 = vT0 P

• Whoa! that’s just the left eigenvectorof the transition matrix !

10



Stationary distribution

• The stationary distribution at a node is related to the amount of

time a random walker spends visiting that node.

• Remember that we can write the probability distribution at a node as

xTt+1 = xTt P

• For the stationary distribution v0 we have

vT0 = vT0 P

• Whoa! that’s just the left eigenvectorof the transition matrix !

10



Stationary distribution

• The stationary distribution at a node is related to the amount of

time a random walker spends visiting that node.

• Remember that we can write the probability distribution at a node as

xTt+1 = xTt P

• For the stationary distribution v0 we have

vT0 = vT0 P

• Whoa! that’s just the left eigenvectorof the transition matrix !

10



Stationary distribution

• Lot of theory hiding here.

• For example, what is the guarantee that there will be a unique left

eigenvector, or the random walk will at all converge?

• Can’t it just keep oscillating?
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Well-behaved Markov chains
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Well-behaved Markov chains
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Perron Frobenius - Well-behaved Markov chains

• If a markov chain is irreducible and aperiodic then

• the largest eigenvalue of the transition matrix will be equal to 1

• all the other eigenvalues will be strictly less than 1

• the first left and right eigenvector will have all positive entries

• These results imply that for a well behaved graph there exists an

unique stationary distribution.
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Pagerank and Perron Frobenius

• Perron Frobenius only holds if the graph is irreducible and aperiodic.

• But how can we guarantee that for the web graph? Do it with a

small restart probability c.

• At any time-step the random surfer

• jumps (teleport) to any other node with probability c

• jumps to its direct neighbors with total probability 1− c.

P̃ = (1− c)P + c11T /n
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Power iteration

• Power Iteration is an algorithm for computing the stationary

distribution.

• Start with any distribution x0

• Keep computing xT
t+1 = xT

t P

• Stop when xt+1 and xt are almost the same
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Power Iteration

• Why should this work?

• Write x0 as a linear combination of the left eigenvectors

{v0, v1, . . . , vn−1} of P

• Remember that v0 is the stationary distribution.

x0 = c0v0 + c1v1 + c2v2 + . . . + cn−1vn−1

• c0 = 1. Why?

• First note that 1T vi = 0 if i 6= 1

• So xT
0 1 = c0 = 1, since both x0 and v0 are distributions.
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Second eigenvalue

• Smaller σ2 is faster the chain mixes.

• For pagerank, we wonder what the second largest eigenvalue is of

P̃ = (1− c)P + cU

• The largest eigenvalue is 1

• The second largest is less than 1− c in magnitude.

• So pagerank computation converges fast.
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Pagerank

• We are looking for the vector v s.t.

vT = (1− c)vTP + crT

• r is a distribution over web-pages.

• If r is the uniform distribution we get pagerank.

• What happens if r is non-uniform?

• Personalization
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Personalized Pagerank

• The only difference is that we use a non-uniform teleportation

distribution, i.e. at any time step teleport to a set of webpages.

• In other words we are looking for the vector v s.t.

vT = (1− c)vTP + crT

• r is a non-uniform preference vector specific to an user.

• v gives “personalized views” of the web.
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Personalized Pagerank

• Pre-computation: r is not known from before

• Computing during query time takes too long

• A crucial observation1 is that the personalized pagerank vector is

linear w.r.t r

• Lots of literature for computing personalized pagerank fast, and on

the go.
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Rank Stability
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Rank Stability

• How does the ranking change when the link structure changes?

• The web-graph is changing continuously.

• How does that affect page-rank?
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Rank Stability
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Rank Stability

• Ng et al 2001: P̃ = (1− c)P + cU

• Theorem: if v is the left eigenvector of . Let the pages i1, i2, . . . , ik
be changed in any way, and let v ′ be the new pagerank. Then

‖v − v ′‖1 ≤
∑k

j=1 v(ij )

c

• So if c is not too close to 0, the system would be rank stable and

also converge fast!
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