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Bootstrap

So far we have talked about estimation, and ways to estimate
statistical quantities quickly

But often, you are interested in quantifying the variability of your
estimate

You can do this using the variance of your estimate or by producing
a confidence interval

What is a confidence interval?
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Confidence Interval

e Data Xq,...,Xn %i P
e Some estimator # of parameter of interest 6.

e For some coverage «, want to produce a lower and upper bound
such that:
P<§§9§B> >1-2aq,

e Say you know the distribution of (4 — 6)/6

e Then you will just return:
P(é—nl,a&gagé—m&> >1- 2a,

where kq, K1_, are the quantiles of (6 — 0)/6
e The distribution of (# — #)/6 depends on P.

e Often this distribution is normal, but with unknown parameters.
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If we were omniscient

e The trouble is we don't know P.

What will we do if we did know P?

Draw B datasets of size n from P

For the i" dataset, calculate 6(7)

Now get the distribution of é(l)., . .,@(B) and get the C.I.
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Bootstrap

e The trouble is we don't know P.
e All we have at hand is the n datapoints xq,...,xn
e So we put a 1/n mass on each datapoint to get a empirical

distribution P

Drawing n points from this distribution boils down to?

Sampling with replacement!



Bootstrap: plug in principle
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Empirical bootstrap

How do you estimate P?
.. ~ 1
Empirical Bootstrap P = - Zd(x,-)
1

Generate m samples (X7, .. .,X,}")(j), j=1:m.
Each giving a (6*,5) pair.
Compute the ko quantile

é*

6.*

~

of the distribution of 4

Parametric bootstrap P = P;
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- 1
E[X*|X{,...,Xn] = E [nZXﬂXl,..A,Xn]
i
= E[X{|Xq1, ..., Xn]

n
:ZX,‘XH:)_(
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var[X*|Xq,..., Xn] = var ZX IX1,..., X

= %var [XTIX1,. .., Xn]

1 *\2 o2
= (IO %0 Xal = X)
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Sample Variance




Empirical bootstrap

Lets try the simplest setting with 8 = 1 := E[X{]

e What is the variance of the bootstrapped mean X* given the data?

n
var[X*|Xq,..., Xn] = var %ZXi*\Xl,...,Xn
i=1

= %var [XTIX1,. .., Xn]

= 1 (E[(Xik)2|X17--'7X”] - Xz)

_1 12)(/.2_)'(2
n\ n<&
1

Sample Variance

e This makes sense, since the sample variance converges to the true
variance, and we all know that the variance of X is exactly 02/n
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Empirical bootstrap

But whats the point then? Can’t you just do some Taylor approximation
or something, and get the final distribution? Not always, lets take the
median.

e What is the asymptotic distribution of the median of ni.i.d r.v.s
drawn from P?

e Its a normal, of course, like a lot of other estimators.

e With variance % where fi is the population median and f is
4nf (fi)?
the density of P

e If we don't know P, we can't evaluate the above.
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Empirical Bootstrap

Does it always work? Lets try the maximum of Xy,..., Xn lid u([o, a])

e What is the true limiting distribution?

n(0 — X n) n —x

e The bootstrapped limiting distribution

n(X(n) — X(*n))
(5

® :o) =P(X(m=Xm)=1-(1-1/n)") =1-1/e
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Empirical Bootstrap

Does it always work?
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Empirical Bootstrap

Does it always work?

e Rule of thumb: when the asymptotic distribution is normal.
e Another con is it will take forever if n is large, even if you parallelize

e What do you do when its not?

11
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Subsampling

e Starts with the realization that instead of drawing with replacement,
its better to draw without replacement smaller samples

e This is in some sense, a more honest representation or
approximation of the unknow distribution P

e Draw B size b subsamples without replacement
e For each, compute your estimator 0
e Now get confidence intervals or variance of this distribution

e But now everything is on a different scale!
e For example, the standard dev. of the mean decays at a rate of 1/y/n
e If you use subsampling, the numbers you will get will be 1/vb

e What to do? You will need to analytically correct the variability.
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Subsampling - pros and cons

Pros

e Very fast, specially you have a super-linear estimation algorithm

e Works for statistics which bootstrap doesnt work for, i.e. requires far
less conditions, as long as b grows to infinity with n, but at a slower
rate.

Cons

e \ery sensitive to the choice of b (next two slides)

e You need to know the scaling factor to correct for using b < n

13



Subsampling - cons [See “Bag of little Bootstraps” paper]

» Multivariate linear regression with d =100 and n =
50,000 on synthetic data.

+ X coordinates sampled independently from StudentT(3).

« y=w'x+ ¢, where win R?is a fixed weight vector and ¢
is Gaussian noise.

+ Estimate 6, = w, in R? via least squares.

+ Compute a marginal confidence interval for each
component of w, and assess accuracy via relative mean
(across components) absolute deviation from true
confidence interval size.

+ For subsampling, use b(n) = n” for various values of y.

+ Similar results obtained with Normal and Gamma data
generating distributions, as well as if estimate a
misspecified model.

14



Subsampling - cons

0.5¢p

Relative Error

0.2y

0.1p

Time (sec)
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Bag of little bootstraps

e In between subsampling and bootstrap
e Draw size m w/o replacement samples from the data

e Draw size n with replacement samples from each subsample

16



Summ

e Three main parts—+e
e Large scale optimization:

e Gradient descent, Newton Raphson
e Stochastic gradient descent, proximal methods, subgradients, dual
coordinate ascent, etc.
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Summary

e Three main parts—+e

e lLarge scale optimization:
e Momentum methods:

e SGD has trouble navigating ravines, i.e. areas where the surface
curves much more steeply in one dimension than in another , which
are common around local optima.

e Momentum helps accelerate SGD in the correct direction by damping
oscillation

e |t does this by adding a fraction of the update vector of the past time
step to the current update vector:

18



Summary

e Three main parts

e Large scale optimization:
e Adaptive methods:

John Duchi, Elad Hazan, Yoram Singer. " Adaptive Subgradient
Methods for Online Learning and Stochastic Optimization.” Journal
of Machine Learning Research 2011

Adaptively learn learning rates for different coordinates — slow
learning rates for frequent features, and large ones for infrequent
features

Unfortunately the squared gradients keep accumulating and
eventually learning rate goes to zero.

Diederik, Kingma; Ba, Jimmy (2014), " Adam: a Method for
Stochastic Optimization”

ADAM uses exponentially decaying average of past squared gradients,
and also does bias correction by estimating moments.
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Summary

e Large scale optimization:
e Stochastic gradient descent
e Rie Johnson and Tong Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances in neural
information processing systems, pages 315-323, 2013
e Main point: Talks about dual coordinate ascent and shows how this
leads to variance reduction
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Summary

e Large scale optimization:

e Stochastic gradient descent

Rie Johnson and Tong Zhang. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances in neural
information processing systems, pages 315-323, 2013

Main point: Talks about dual coordinate ascent and shows how this
leads to variance reduction

Wilson et al., The Marginal Value of Adaptive Gradient Methods in
Machine Learning (NeurlPS 2017)

Talks about pitfalls of Adaptive methods using a simple
overparameterized problem

Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright,
Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient
Descent”, NIPS 2011.

Asynchronous SGD without locks—use the sparsity in data
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e Nearest neighbor methods: locality sensitive hashing, random
projections and Johnson-Lindenstrauss, tree structures

e Random Features for Large-Scale Kernel Machines, Ali Rahimi, Ben
Recht, NIPS 2007

e Random hash functions to project data to a low dimensional space so
that the inner products of the transformed data are approximately
equal to those in the feature space of a kernel.

e Weinberger, Kilian, et al. " Feature hashing for large scale multitask
learning.” ICML, 2009.

e Random projection type hash functions to bring high dimensional
data down to lower dimensional space while not affecting the dot
products (which are important for a various number of tasks).
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e PCA, Spectral clustering
e Semisupervised learning, Pagerank, connection using random walks
e Power method for eigenvectors

e Networks: blockmodels, mixed membership models, connections to
spectral clustering

e Topic models: connection to mixed membership models and corner
finding algorithms

e Bootstrap and subsampling
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