SDS 385: Stat Models for Big Data
 Lecture 11: Bootstrap and subsampling

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Bootstrap

- So far we have talked about estimation, and ways to estimate statistical quantities quickly
- But often, you are interested in quantifying the variability of your estimate
- You can do this using the variance of your estimate or by producing a confidence interval
- What is a confidence interval?

Confidence Interval

- Data $x_{1}, \ldots, x_{n} \stackrel{\text { iid }}{\sim} P$
- Some estimator $\hat{\theta}$ of parameter of interest θ.
- For some coverage α, want to produce a lower and upper bound such that:

$$
P(\hat{a} \leq \theta \leq \hat{b}) \geq 1-2 \alpha,
$$

Confidence Interval

- Data $x_{1}, \ldots, x_{n} \stackrel{\text { iid }}{\sim} P$
- Some estimator $\hat{\theta}$ of parameter of interest θ.
- For some coverage α, want to produce a lower and upper bound such that:

$$
P(\hat{a} \leq \theta \leq \hat{b}) \geq 1-2 \alpha,
$$

- Say you know the distribution of $(\hat{\theta}-\theta) / \hat{\sigma}$

Confidence Interval

- Data $x_{1}, \ldots, x_{n} \stackrel{\text { iid }}{\sim} P$
- Some estimator $\hat{\theta}$ of parameter of interest θ.
- For some coverage α, want to produce a lower and upper bound such that:

$$
P(\hat{a} \leq \theta \leq \hat{b}) \geq 1-2 \alpha,
$$

- Say you know the distribution of $(\hat{\theta}-\theta) / \hat{\sigma}$
- Then you will just return:

$$
P\left(\hat{\theta}-\kappa_{1-\alpha} \hat{\sigma} \leq \theta \leq \hat{\theta}-\kappa_{\alpha} \hat{\sigma}\right) \geq 1-2 \alpha,
$$

where $\kappa_{\alpha}, \kappa_{1-\alpha}$ are the quantiles of $(\hat{\theta}-\theta) / \hat{\sigma}$

- The distribution of $(\hat{\theta}-\theta) / \hat{\sigma}$ depends on P.

Confidence Interval

- Data $x_{1}, \ldots, x_{n} \stackrel{\text { iid }}{\sim} P$
- Some estimator $\hat{\theta}$ of parameter of interest θ.
- For some coverage α, want to produce a lower and upper bound such that:

$$
P(\hat{a} \leq \theta \leq \hat{b}) \geq 1-2 \alpha,
$$

- Say you know the distribution of $(\hat{\theta}-\theta) / \hat{\sigma}$
- Then you will just return:

$$
P\left(\hat{\theta}-\kappa_{1-\alpha} \hat{\sigma} \leq \theta \leq \hat{\theta}-\kappa_{\alpha} \hat{\sigma}\right) \geq 1-2 \alpha,
$$

where $\kappa_{\alpha}, \kappa_{1-\alpha}$ are the quantiles of $(\hat{\theta}-\theta) / \hat{\sigma}$

- The distribution of $(\hat{\theta}-\theta) / \hat{\sigma}$ depends on P.
- Often this distribution is normal, but with unknown parameters.

If we were omniscient

- The trouble is we don't know P.
- What will we do if we did know P ?

If we were omniscient

- The trouble is we don't know P.
- What will we do if we did know P ?
- Draw B datasets of size n from P

If we were omniscient

- The trouble is we don't know P.
- What will we do if we did know P ?
- Draw B datasets of size n from P
- For the $i^{\text {th }}$ dataset, calculate $\hat{\theta}^{(i)}$

If we were omniscient

- The trouble is we don't know P.
- What will we do if we did know P ?
- Draw B datasets of size n from P
- For the $i^{\text {th }}$ dataset, calculate $\hat{\theta}^{(i)}$
- Now get the distribution of $\hat{\theta}^{(1)}, \ldots, \hat{\theta}^{(B)}$ and get the C.I.

Bootstrap

- The trouble is we don't know P.
- All we have at hand is the n datapoints x_{1}, \ldots, x_{n}

Bootstrap

- The trouble is we don't know P.
- All we have at hand is the n datapoints x_{1}, \ldots, x_{n}
- So we put a $1 / n$ mass on each datapoint to get a empirical distribution \hat{P}

Bootstrap

- The trouble is we don't know P.
- All we have at hand is the n datapoints x_{1}, \ldots, x_{n}
- So we put a $1 / n$ mass on each datapoint to get a empirical distribution \hat{P}
- Drawing n points from this distribution boils down to?

Bootstrap

- The trouble is we don't know P.
- All we have at hand is the n datapoints x_{1}, \ldots, x_{n}
- So we put a $1 / n$ mass on each datapoint to get a empirical distribution \hat{P}
- Drawing n points from this distribution boils down to?
- Sampling with replacement!

Bootstrap: plug in principle

True model Bootstrapped model

$$
\begin{array}{cc}
\hat{\theta} & \hat{\theta}^{*} \\
\hat{\sigma} & \hat{\sigma}^{*} \\
\frac{\hat{\theta}-\theta}{\hat{\sigma}} & \frac{\hat{\theta}^{*}-\hat{\theta}}{\hat{\sigma}^{*}}
\end{array}
$$

Empirical bootstrap

How do you estimate P ?
Empirical Bootstrap $\quad \hat{P}=\frac{1}{n} \sum_{i} \delta\left(x_{i}\right)$
Generate m samples $\left(X_{1}^{*}, \ldots, X_{n}^{*}\right)^{(j)}, j=1: m$.
Each giving a ($\hat{\theta}^{*}, \hat{\sigma}^{*}$) pair.
Compute the κ_{α} quantile
of the distribution of $\frac{\hat{\theta}^{*}-\hat{\theta}}{\hat{\sigma}^{*}}$

Parametric bootstrap $\hat{P}=P_{\hat{\theta}}$

Empirical bootstrap

Lets try the simplest setting with $\theta=\mu:=E\left[X_{1}\right]$

- What is the expectation of the bootstrapped mean \bar{X}^{*} given the data?

Empirical bootstrap

Lets try the simplest setting with $\theta=\mu:=E\left[X_{1}\right]$

- What is the expectation of the bootstrapped mean \bar{X}^{*} given the data?

$$
\begin{aligned}
E\left[\bar{X}^{*} \mid X_{1}, \ldots, X_{n}\right] & =E\left[\left.\frac{1}{n} \sum_{i} x_{i}^{*} \right\rvert\, X_{1}, \ldots, X_{n}\right] \\
& =E\left[X_{1}^{*} \mid X_{1}, \ldots, X_{n}\right] \\
& =\sum_{i=1}^{n} x_{i} \times n=\bar{X}
\end{aligned}
$$

Empirical bootstrap

Lets try the simplest setting with $\theta=\mu:=E\left[X_{1}\right]$

- What is the variance of the bootstrapped mean \bar{X}^{*} given the data?

Empirical bootstrap

Lets try the simplest setting with $\theta=\mu:=E\left[X_{1}\right]$

- What is the variance of the bootstrapped mean \bar{X}^{*} given the data?

$$
\begin{aligned}
\operatorname{var}\left[\bar{X}^{*} \mid X_{1}, \ldots, X_{n}\right] & =\operatorname{var}\left[\left.\frac{1}{n} \sum_{i=1}^{n} X_{i}^{*} \right\rvert\, X_{1}, \ldots, X_{n}\right] \\
& =\frac{1}{n} \operatorname{var}\left[X_{1}^{*} \mid X_{1}, \ldots, X_{n}\right] \\
& =\frac{1}{n}\left(E\left[\left(X_{1}^{*}\right)^{2} \mid X_{1}, \ldots, X_{n}\right]-\bar{X}^{2}\right) \\
& =\frac{1}{n} \underbrace{\left(\frac{1}{n} \sum_{i} X_{i}^{2}-\bar{X}^{2}\right)}_{\text {Sample Variance }}
\end{aligned}
$$

Empirical bootstrap

Lets try the simplest setting with $\theta=\mu:=E\left[X_{1}\right]$

- What is the variance of the bootstrapped mean \bar{X}^{*} given the data?

$$
\begin{aligned}
\operatorname{var}\left[\bar{X}^{*} \mid X_{1}, \ldots, X_{n}\right] & =\operatorname{var}\left[\left.\frac{1}{n} \sum_{i=1}^{n} X_{i}^{*} \right\rvert\, X_{1}, \ldots, X_{n}\right] \\
& =\frac{1}{n} \operatorname{var}\left[X_{1}^{*} \mid X_{1}, \ldots, X_{n}\right] \\
& =\frac{1}{n}\left(E\left[\left(X_{1}^{*}\right)^{2} \mid X_{1}, \ldots, X_{n}\right]-\bar{X}^{2}\right) \\
& =\frac{1}{n} \underbrace{\left(\frac{1}{n} \sum_{i} X_{i}^{2}-\bar{X}^{2}\right)}_{\text {Sample Variance }}
\end{aligned}
$$

- This makes sense, since the sample variance converges to the true variance, and we all know that the variance of \bar{X} is exactly σ^{2} / n

Empirical bootstrap

But whats the point then? Can't you just do some Taylor approximation or something, and get the final distribution?

Empirical bootstrap

But whats the point then? Can't you just do some Taylor approximation or something, and get the final distribution? Not always, lets take the median.

- What is the asymptotic distribution of the median of n i.i.d r.v.s drawn from P ?

Empirical bootstrap

But whats the point then? Can't you just do some Taylor approximation or something, and get the final distribution? Not always, lets take the median.

- What is the asymptotic distribution of the median of n i.i.d r.v.s drawn from P ?
- Its a normal, of course, like a lot of other estimators.

Empirical bootstrap

But whats the point then? Can't you just do some Taylor approximation or something, and get the final distribution? Not always, lets take the median.

- What is the asymptotic distribution of the median of n i.i.d r.v.s drawn from P ?
- Its a normal, of course, like a lot of other estimators.
- With variance $\frac{1}{4 n f(\tilde{\mu})^{2}}$, where $\tilde{\mu}$ is the population median and f is the density of P

Empirical bootstrap

But whats the point then? Can't you just do some Taylor approximation or something, and get the final distribution? Not always, lets take the median.

- What is the asymptotic distribution of the median of n i.i.d r.v.s drawn from P ?
- Its a normal, of course, like a lot of other estimators.
- With variance $\frac{1}{4 n f(\tilde{\mu})^{2}}$, where $\tilde{\mu}$ is the population median and f is the density of P
- If we don't know P, we can't evaluate the above.

Empirical Bootstrap

Does it always work?

Empirical Bootstrap

Does it always work? Lets try the maximum of $x_{1}, \ldots, x_{n} \stackrel{\text { iid }}{\sim} U([0, \theta])$

- What is the true limiting distribution?

Empirical Bootstrap

Does it always work? Lets try the maximum of $x_{1}, \ldots, x_{n} \stackrel{\text { iid }}{\sim} U([0, \theta])$

- What is the true limiting distribution?

$$
P\left(\frac{n\left(\theta-X_{(n)}\right)}{\theta}>x\right)=P\left(X_{(n)} \leq \theta(1-x / n)\right)=(1-x / n)^{n} \rightarrow e^{-x}
$$

- The bootstrapped limiting distribution

$$
P\left(\frac{n\left(X_{(n)}-X_{(n)}^{*}\right)}{X_{(n)}}=0\right)=P\left(X_{(n)}^{*}=X_{(n)}\right)=\left(1-(1-1 / n)^{n}\right) \rightarrow 1-1 / e
$$

Empirical Bootstrap

Does it always work?

Empirical Bootstrap

Does it always work?

- Rule of thumb: when the asymptotic distribution is normal.
- Another con is it will take forever if n is large, even if you parallelize
- What do you do when its not?

Subsampling

- Starts with the realization that instead of drawing with replacement, its better to draw without replacement smaller samples
- This is in some sense, a more honest representation or approximation of the unknow distribution P

Subsampling

- Starts with the realization that instead of drawing with replacement, its better to draw without replacement smaller samples
- This is in some sense, a more honest representation or approximation of the unknow distribution P
- Draw B size b subsamples without replacement
- For each, compute your estimator $\hat{\theta}$
- Now get confidence intervals or variance of this distribution

Subsampling

- Starts with the realization that instead of drawing with replacement, its better to draw without replacement smaller samples
- This is in some sense, a more honest representation or approximation of the unknow distribution P
- Draw B size b subsamples without replacement
- For each, compute your estimator $\hat{\theta}$
- Now get confidence intervals or variance of this distribution
- But now everything is on a different scale!
- For example, the standard dev. of the mean decays at a rate of $1 / \sqrt{n}$
- If you use subsampling, the numbers you will get will be $1 / \sqrt{b}$

Subsampling

- Starts with the realization that instead of drawing with replacement, its better to draw without replacement smaller samples
- This is in some sense, a more honest representation or approximation of the unknow distribution P
- Draw B size b subsamples without replacement
- For each, compute your estimator $\hat{\theta}$
- Now get confidence intervals or variance of this distribution
- But now everything is on a different scale!
- For example, the standard dev. of the mean decays at a rate of $1 / \sqrt{n}$
- If you use subsampling, the numbers you will get will be $1 / \sqrt{b}$
- What to do? You will need to analytically correct the variability.

Subsampling - pros and cons

Pros

- Very fast, specially you have a super-linear estimation algorithm
- Works for statistics which bootstrap doesnt work for, i.e. requires far less conditions, as long as b grows to infinity with n, but at a slower rate.

Cons

- Very sensitive to the choice of b (next two slides)
- You need to know the scaling factor to correct for using $b<n$

Subsampling - cons [See "Bag of little Bootstraps" paper]

- Multivariate linear regression with $d=100$ and $n=$ 50,000 on synthetic data.
- x coordinates sampled independently from StudentT(3).
- $y=w^{\top} x+\varepsilon$, where w in R^{d} is a fixed weight vector and ε is Gaussian noise.
- Estimate $\theta_{n}=w_{n}$ in R^{d} via least squares.
- Compute a marginal confidence interval for each component of w_{n} and assess accuracy via relative mean (across components) absolute deviation from true confidence interval size.
- For subsampling, use $b(n)=n^{\gamma}$ for various values of γ.
- Similar results obtained with Normal and Gamma data generating distributions, as well as if estimate a misspecified model.

Subsampling - cons

Bag of little bootstraps

- In between subsampling and bootstrap
- Draw size $m \mathrm{w} / \mathrm{o}$ replacement samples from the data
- Draw size n with replacement samples from each subsample

Summary

- Three main parts+ ϵ
- Large scale optimization:
- Gradient descent, Newton Raphson
- Stochastic gradient descent, proximal methods, subgradients, dual coordinate ascent, etc.

Summary

- Three main parts+ ϵ
- Large scale optimization:
- Momentum methods:
- SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another, which are common around local optima.
- Momentum helps accelerate SGD in the correct direction by damping oscillation
- It does this by adding a fraction of the update vector of the past time step to the current update vector:

Summary

- Three main parts
- Large scale optimization:
- Adaptive methods:
- John Duchi, Elad Hazan, Yoram Singer. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." Journal of Machine Learning Research 2011
- Adaptively learn learning rates for different coordinates - slow learning rates for frequent features, and large ones for infrequent features
- Unfortunately the squared gradients keep accumulating and eventually learning rate goes to zero.
- Diederik, Kingma; Ba, Jimmy (2014), " Adam: a Method for Stochastic Optimization"
- ADAM uses exponentially decaying average of past squared gradients, and also does bias correction by estimating moments.

Summary

- Large scale optimization:
- Stochastic gradient descent
- Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems, pages 315-323, 2013
- Main point: Talks about dual coordinate ascent and shows how this leads to variance reduction

Summary

- Large scale optimization:
- Stochastic gradient descent
- Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems, pages 315-323, 2013
- Main point: Talks about dual coordinate ascent and shows how this leads to variance reduction
- Wilson et al., The Marginal Value of Adaptive Gradient Methods in Machine Learning (NeurIPS 2017)
- Talks about pitfalls of Adaptive methods using a simple overparameterized problem
- Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright, Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent", NIPS 2011.
- Asynchronous SGD without locks-use the sparsity in data

Summary

- Nearest neighbor methods: locality sensitive hashing, random projections and Johnson-Lindenstrauss, tree structures
- Random Features for Large-Scale Kernel Machines, Ali Rahimi, Ben Recht, NIPS 2007
- Random hash functions to project data to a low dimensional space so that the inner products of the transformed data are approximately equal to those in the feature space of a kernel.
- Weinberger, Kilian, et al. "Feature hashing for large scale multitask learning." ICML, 2009.
- Random projection type hash functions to bring high dimensional data down to lower dimensional space while not affecting the dot products (which are important for a various number of tasks).

Summary

- PCA, Spectral clustering
- Semisupervised learning, Pagerank, connection using random walks
- Power method for eigenvectors
- Networks: blockmodels, mixed membership models, connections to spectral clustering
- Topic models: connection to mixed membership models and corner finding algorithms
- Bootstrap and subsampling

