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Bootstrap

• So far we have talked about estimation, and ways to estimate

statistical quantities quickly

• But often, you are interested in quantifying the variability of your

estimate

• You can do this using the variance of your estimate or by producing

a confidence interval

• What is a confidence interval?
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Confidence Interval

• Data X1, . . . ,Xn
iid∼ P

• Some estimator θ̂ of parameter of interest θ.

• For some coverage α, want to produce a lower and upper bound

such that:

P
(
â ≤ θ ≤ b̂

)
≥ 1− 2α,

• Say you know the distribution of (θ̂ − θ)/σ̂

• Then you will just return:

P
(
θ̂ − κ1−ασ̂ ≤ θ ≤ θ̂ − κασ̂

)
≥ 1− 2α,

where κα, κ1−α are the quantiles of (θ̂ − θ)/σ̂

• The distribution of (θ̂ − θ)/σ̂ depends on P.

• Often this distribution is normal, but with unknown parameters.
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If we were omniscient

• The trouble is we don’t know P.

• What will we do if we did know P?

• Draw B datasets of size n from P

• For the ith dataset, calculate θ̂(i)

• Now get the distribution of θ̂(1), . . . , θ̂(B) and get the C.I.
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Bootstrap

• The trouble is we don’t know P.

• All we have at hand is the n datapoints x1, . . . , xn

• So we put a 1/n mass on each datapoint to get a empirical

distribution P̂

• Drawing n points from this distribution boils down to?

• Sampling with replacement!
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Bootstrap: plug in principle

True model Bootstrapped model

θ̂ θ̂∗

σ̂ σ̂∗

θ̂ − θ
σ̂

θ̂∗ − θ̂
σ̂∗
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Empirical bootstrap

How do you estimate P?

Empirical Bootstrap P̂ =
1

n

∑
i

δ(xi )

Generate m samples (X∗
1 , . . . ,X

∗
n )(j), j = 1 : m.

Each giving a (θ̂∗, σ̂∗) pair.

Compute the κα quantile

of the distribution of
θ̂∗ − θ̂
σ̂∗

Parametric bootstrap P̂ = P
θ̂

6



Empirical bootstrap

Lets try the simplest setting with θ = µ := E [X1]

• What is the expectation of the bootstrapped mean X̄∗ given the

data?

E [X̄∗|X1, . . . ,Xn] = E

1

n

∑
i

X∗
i |X1, . . . ,Xn


= E [X∗

1 |X1, . . . ,Xn]

=
n∑

i=1

Xi × n = X̄
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Empirical bootstrap

Lets try the simplest setting with θ = µ := E [X1]

• What is the variance of the bootstrapped mean X̄∗ given the data?

var[X̄∗|X1, . . . ,Xn] = var

1

n

n∑
i=1

X∗
i |X1, . . . ,Xn


=

1

n
var
[
X∗

1 |X1, . . . ,Xn
]

=
1

n

(
E [(X∗

1 )2|X1, . . . ,Xn]− X̄2
)

=
1

n

1

n

∑
i

X2
i − X̄2


︸ ︷︷ ︸

Sample Variance

• This makes sense, since the sample variance converges to the true

variance, and we all know that the variance of X̄ is exactly σ2/n
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Empirical bootstrap

But whats the point then? Can’t you just do some Taylor approximation

or something, and get the final distribution?

Not always, lets take the

median.

• What is the asymptotic distribution of the median of n i.i.d r.v.s

drawn from P?

• Its a normal, of course, like a lot of other estimators.

• With variance
1

4nf (µ̃)2
, where µ̃ is the population median and f is

the density of P

• If we don’t know P, we can’t evaluate the above.

9



Empirical bootstrap

But whats the point then? Can’t you just do some Taylor approximation

or something, and get the final distribution? Not always, lets take the

median.

• What is the asymptotic distribution of the median of n i.i.d r.v.s

drawn from P?

• Its a normal, of course, like a lot of other estimators.

• With variance
1

4nf (µ̃)2
, where µ̃ is the population median and f is

the density of P

• If we don’t know P, we can’t evaluate the above.

9



Empirical bootstrap

But whats the point then? Can’t you just do some Taylor approximation

or something, and get the final distribution? Not always, lets take the

median.

• What is the asymptotic distribution of the median of n i.i.d r.v.s

drawn from P?

• Its a normal, of course, like a lot of other estimators.

• With variance
1

4nf (µ̃)2
, where µ̃ is the population median and f is

the density of P

• If we don’t know P, we can’t evaluate the above.

9



Empirical bootstrap

But whats the point then? Can’t you just do some Taylor approximation

or something, and get the final distribution? Not always, lets take the

median.

• What is the asymptotic distribution of the median of n i.i.d r.v.s

drawn from P?

• Its a normal, of course, like a lot of other estimators.

• With variance
1

4nf (µ̃)2
, where µ̃ is the population median and f is

the density of P

• If we don’t know P, we can’t evaluate the above.

9



Empirical bootstrap

But whats the point then? Can’t you just do some Taylor approximation

or something, and get the final distribution? Not always, lets take the

median.

• What is the asymptotic distribution of the median of n i.i.d r.v.s

drawn from P?

• Its a normal, of course, like a lot of other estimators.

• With variance
1

4nf (µ̃)2
, where µ̃ is the population median and f is

the density of P

• If we don’t know P, we can’t evaluate the above.

9



Empirical Bootstrap

Does it always work?

Lets try the maximum of X1, . . . ,Xn
iid∼ U([0, θ])

• What is the true limiting distribution?

P

(
n(θ − X(n))

θ
> x

)
= P

(
X(n) ≤ θ(1− x/n)

)
= (1− x/n)n → e−x

• The bootstrapped limiting distribution

P

(
n(X(n) − X∗

(n))

X(n)
= 0

)
= P(X∗

(n) = X(n)) =
(
1− (1− 1/n)n

)
→ 1− 1/e
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Empirical Bootstrap

Does it always work?

• Rule of thumb: when the asymptotic distribution is normal.

• Another con is it will take forever if n is large, even if you parallelize

• What do you do when its not?
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Subsampling

• Starts with the realization that instead of drawing with replacement,

its better to draw without replacement smaller samples

• This is in some sense, a more honest representation or

approximation of the unknow distribution P

• Draw B size b subsamples without replacement

• For each, compute your estimator θ̂

• Now get confidence intervals or variance of this distribution

• But now everything is on a different scale!

• For example, the standard dev. of the mean decays at a rate of 1/
√
n

• If you use subsampling, the numbers you will get will be 1/
√
b

• What to do? You will need to analytically correct the variability.
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Subsampling - pros and cons

Pros

• Very fast, specially you have a super-linear estimation algorithm

• Works for statistics which bootstrap doesnt work for, i.e. requires far

less conditions, as long as b grows to infinity with n, but at a slower

rate.

Cons

• Very sensitive to the choice of b (next two slides)

• You need to know the scaling factor to correct for using b < n
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Subsampling - cons [See “Bag of little Bootstraps” paper]
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Subsampling - cons
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Bag of little bootstraps

• In between subsampling and bootstrap

• Draw size m w/o replacement samples from the data

• Draw size n with replacement samples from each subsample
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Summary

• Three main parts+ε

• Large scale optimization:

• Gradient descent, Newton Raphson

• Stochastic gradient descent, proximal methods, subgradients, dual

coordinate ascent, etc.
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Summary

• Three main parts+ε

• Large scale optimization:

• Momentum methods:

• SGD has trouble navigating ravines, i.e. areas where the surface

curves much more steeply in one dimension than in another , which

are common around local optima.

• Momentum helps accelerate SGD in the correct direction by damping

oscillation

• It does this by adding a fraction of the update vector of the past time

step to the current update vector:
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Summary

• Three main parts

• Large scale optimization:

• Adaptive methods:

• John Duchi, Elad Hazan, Yoram Singer. ”Adaptive Subgradient

Methods for Online Learning and Stochastic Optimization.” Journal

of Machine Learning Research 2011

• Adaptively learn learning rates for different coordinates – slow

learning rates for frequent features, and large ones for infrequent

features

• Unfortunately the squared gradients keep accumulating and

eventually learning rate goes to zero.

• Diederik, Kingma; Ba, Jimmy (2014), ”Adam: a Method for

Stochastic Optimization”

• ADAM uses exponentially decaying average of past squared gradients,

and also does bias correction by estimating moments.
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Summary

• Large scale optimization:

• Stochastic gradient descent

• Rie Johnson and Tong Zhang. Accelerating stochastic gradient

descent using predictive variance reduction. In Advances in neural

information processing systems, pages 315–323, 2013

• Main point: Talks about dual coordinate ascent and shows how this

leads to variance reduction

• Wilson et al., The Marginal Value of Adaptive Gradient Methods in

Machine Learning (NeurIPS 2017)

• Talks about pitfalls of Adaptive methods using a simple

overparameterized problem

• Feng Niu, Benjamin Recht, Christopher Re, Stephen J. Wright,

Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient

Descent”, NIPS 2011.

• Asynchronous SGD without locks–use the sparsity in data
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Summary

• Nearest neighbor methods: locality sensitive hashing, random

projections and Johnson-Lindenstrauss, tree structures

• Random Features for Large-Scale Kernel Machines, Ali Rahimi, Ben

Recht, NIPS 2007

• Random hash functions to project data to a low dimensional space so

that the inner products of the transformed data are approximately

equal to those in the feature space of a kernel.

• Weinberger, Kilian, et al. ”Feature hashing for large scale multitask

learning.” ICML, 2009.

• Random projection type hash functions to bring high dimensional

data down to lower dimensional space while not affecting the dot

products (which are important for a various number of tasks).
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Summary

• PCA, Spectral clustering

• Semisupervised learning, Pagerank, connection using random walks

• Power method for eigenvectors

• Networks: blockmodels, mixed membership models, connections to

spectral clustering

• Topic models: connection to mixed membership models and corner

finding algorithms

• Bootstrap and subsampling

22


