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Technical things you need for this lecture

e What is the log likelihood and what is MLE— and how to get the
MLE?

e How to do derivatives w.r.t a vector. (See section 2.4) https:
//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

e What is the Hessian of a function?

e Eigenvalues of a matrix and how they change when you add a
multiple of identity.

e What is a Positive Semi-Definite (PSD) matrix?

e What is a convex function (Jensen's inequality) and what operations
preserves convexity? See 2.3 in
https://web.stanford.edu/~boyd/cvibook/bv_cvxbook.pdf

e What is a strongly convex function and how can you relate to the
Hessian.

e What is the mean value theorem in Calculus, we will do the vector
version of this.

e What is a Lipschitz continuous function?


https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Linear regression: recap

Given n pairs (x;,y;) € RPT1*1 consider the model:

y=XB+e 6,‘NN(0,O'2)

where:
Bo
Y1 €1 1 x10 ... X1p
B1
Yo € 1 X ... xp
y = . €= . B = B2 |, and x =
Yl‘l €n i 1 Xn2 PN Xnp
Bp

e X,y are given, you need to estimate .



MLE - recap

—u—meW—xm)
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f(y|X;B) oc exp(

e Take Log, we can get:

~(y = XB) "y ~ XB) 1)

202

e Same drill — differentiate and set it to zero.
X" y-XB)=0-X"XB=XTy 5 B=X"Xx)"1xTy

e What happens when p > n? XTX is not invertible.



Ridge regression

Add a prior to B, i.e. B~ N(0,\lp), or think of adding a
regularization that penalizes large values of ﬂTﬂ.

e So now we have:

~(v - XB)"(y — XB)

o - 2878)

fy|X,B) o< exp(

e Differentiating and setting to zero gives:
B=(X"Xx+xp) 'xTy

e Phew! — no issues with invertibility of X T X



Exact computation

e If X was dense, how much time would the computation of XTx

take?
e Wait, what is dense?
e Well dense means, X has about ©(np) non-zero elements.
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Figure 1: Dense matrix multiplication®

e So O(n) computation for each of p2 entries, and hence np2.

IBorrowed from Cho-Jui Hsieh's classnotes at UC-Dauvis.



Sparse m data structures

e How do you store a sparse vector?

e All you need is two vectors: one is of the indices of nonzero elements
and one is the values.
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Figure 2: Sparse matrix multiplication

e If A has nnz non-zeroes, then worst case, the complexity is O(n x nnz)
operations for multiplying a sparse matrix with another dense matrix.

2Borrowed from Grey Ballard and Alex Druinsky, SIAM conf. on Lin. Algenbra



Back to regression

e Inverting a p x p matrix takes O(p3) time.
e Alternatives: use linear solvers of the form Au = v.
e Here A:XTX+)\Ip, v:XTy and u = 8.

e Unless your matrix A has some structure, linear solvers can also be
expensive. However, if it does have structure, e.g. its diagonally
dominant, etc, then there are nearly linear time solvers.

e Typically for regression, we don't expect to have such structure.

e So, what can be done?



Iterative solvers

e Lets talk about gradient descent type methods.

n
e Model: f(x; g )
2 L
- data parameter
e Example of f: negative log-likelihood over iid data-points, e.g. linear

regression, logistic regression, etc.
e Goal: f=arg mﬁi{n f(x;; B)

e Lets deal with convex loss functions.



Convex functions

fla) =

Figure 3: A convex function

Va € [0,1], f(ax+ (1 — a)y) < af(x) + (1 — a)f(y)



2

Quadratic function f(y) =y

Flax + (1 - a)y) = (ax+ (1 — a)y)?
=a’x’ + (1— a)2y2 +2a(1 — a)xy

a®x% 4 (1- oz)zy2 +a(l - oa)(x2 + y2)
2

IN

ax? + (1-a)y

e Where did | use a € [0, 1]7
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Convex functions f(y) = |y|

Figure 4: f(y) = |y|

Flax + (1 - a)y) = |ax+ (1~ a)y|
< Jox| +1(1 ~ a)y]
< alx| + (1 - a)ly)
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Local optima is also global optima

Theorem
Consider an optimization problem min f(x) where f is convex. Let x* be a
X

local minima. Prove that it is also a global minima.

Proof.

e By definition, 3p > 0, such that Vx € B(x", p), f(x) > f(x").

e If x* is not the global optima, z ¢ B(x™, p) such that f(z) < f(x").

e Take t € [0,1] and the point y = tx™ + (1 — t)z.
fly) < tF(x™) + (1 — t)f(z) < F(x¥)

e Now |y — x™| = (1 — t)|z — x™|. If we take t large enough such that
(1—t)|z—x*| < p, then y € B(x*, p) but f(y) < f(x*), which is a
contradiction.
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Properties of convex functions

e Non-negative linear combinations of convex functions is also convex.

e For example af(x) + bg(x) where f, g are both convex and a, b > 0
is also convex.

e A convex function composed with an affine function is also convex.

e Point-wise maxima of convex functions is convex.

13



Properties of convex functions

e Compositions of convex functions not necessarily convex
e f, g convex.

e Is f — g convex?
e |s fg convex?
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Convex functions: other definitions

First order:

e Second order:

V2f(x) = 0
e Example: f(x) = x2. (x — y)2 >0and f(x)=2>0.
e Example: f(x) = log(1 + &).

1
' =
o« 100 =g
order condition is satisfied.
e Second order: f(x) = f(x)(1 — f(x)) >0

— is monotonically increasing with x and so the first
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Strongly convex functions — add curvature

e First order:
(x =y, VF(x) = VF(y)) > ullx — 2

e Second order:
V2f(x) = pul

e So you add a margin to each inequality.
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Gradient descent

B B —aVi(p)
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Figure 5: Convex function minimization with gradient descent 17



Step size

fiw) fiw)
w* w w' W
Too small: converge Too big: overshoot and
very slowly even diverge

Figure 6: Choice of step size is crucial
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Reality of gradient descent for a nonconvex function
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Figure 7: Very nonconvex function
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Newton Raphson

local quadratic

approximation to f h

Figure 8: Newton Raphson”

4Borrowed from Nick Alger, math.stackexchange.com
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Newton Raphson cont.

e GD takes into account only first order information.

NR also takes second order information.

In particular it uses the Hessian,

2

H(I,J) = W7 Where /,_] € {].,...,k}7

Lets try to minimize a quadratic function:

f—a+bl0+ %aTco.

C is positive semidefinite and so this is a convex function.
e We can minimize the function by differentiating it and by setting the
result equal to O:

VF(@")=b+ C6" =0
o°=-Cc'b
21



Newton Raphson cont.

e In the neighborhood of 8¢, we can use the approximation:
701 0~ F00) + Ve Th InTHEOR  (2)
e Therefore the general updating rule is
o(t+1) — (1) _ Hfl(g(t)) . Vf(g(f))

e You can use a stepsize here as well.
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Gradient Descent

e for t =1: T (or until convergence)

e Do 111 « Bt —aVF(B)

Theorem
Let 8% is the global minima, and the second derivative is bounded as

wl <= H(B) < LI. Then with o =2/(L+ p), gradient descent converges
geometrically, i.e.

L —
1Bess = 8711 < o 1B = 57
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e Lets look at the distance from the optima:

Bry1— B =B — B — a(VF(Bt) — VF(B))
= Bt — B — aH(zt)(Bt — B7)
= (I — aV2f(zt)) (Bt — B*)

e Now take norm of both sides and use Triangle.

1Be41 = 87N < 1 — aH(ze)ll Be — 57
< max(|1 = apl, [1 - aL])||gt — 57|

24
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Pick o = argminmax(|1 — au|, |1 — aL|) =2/(L + )
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Linear convergence

e Set a =2/(L+ p). You get
*
[Be41 — B < L+ B8 = 8l
e Finally after T iterations, we have:
-
L_
_ B3 < 7'“) _ B*
l6r4n-5"1< (£52) 161 - 57

e This is a typical “linear” contraction result.
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Newton Raphson

Theorem

Let 8% is the global minima, and the second derivative is L Lipschitz, i.e.
|H(x) — H(X")|| < kljx — x| and |H™Y|| < 1/u. Then with a =1, Newton
Raphson converges quadratically, i.e.

I1Bes1 — B < w/ullBe — 8711

e Note that this is useful only when ||8;1 — 8%|| < 1
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Ber1— B% = Br — 6% — H M (Be)(VF(Be) — VF(6Y))
=Bt — B* — H 1 (Be)H(z) (Bt — BY)
= (I — H M (Be)H(2e)) (Bt — B%)
= H Y (Be)(H(Be) — H(zt))(Bt — BY)
1Bes1 — B < IH X B IIH(B) — H(ze) | — 57
< r/ullBe — z¢ll1Be — B
< w/ullBe — 8%

28



Scalability concerns

You have to calculate the gradient every iteration.

Take ridge regression.

You want to minimize 1/n ((y —XB)T(y - XB) — )\ﬂTﬂ>

Take a derivative: (—2X T (y — XB) — 2A8)/n
e Grad descent update takes 8,1 + B¢ + a(XT(y — XBt) + A\Bt)
What is the complexity?

e Trick: first compute y — X8.

e np for matrix vector multiplication, nnz(X) for sparse matrix vector
multiplication.

e Remember the examples with humongous n and p?
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