SDS 385: Stat Models for Big Data
 Lecture 2: Linear Regression

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Technical things you need for this lecture

- What is the log likelihood and what is MLE- and how to get the MLE?
- How to do derivatives w.r.t a vector. (See section 2.4) https: //www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
- What is the Hessian of a function?
- Eigenvalues of a matrix and how they change when you add a multiple of identity.
- What is a Positive Semi-Definite (PSD) matrix?
- What is a convex function (Jensen's inequality) and what operations preserves convexity? See 2.3 in https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
- What is a strongly convex function and how can you relate to the Hessian.
- What is the mean value theorem in Calculus, we will do the vector version of this.
- What is a Lipschitz continuous function?

Linear regression: recap

Given n pairs $\left(x_{i}, y_{i}\right) \in \Re^{p+1 \times 1}$, consider the model:

$$
\boldsymbol{y}=\boldsymbol{X} \beta+\boldsymbol{\epsilon} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

where:
$\boldsymbol{y}=\left[\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n}\end{array}\right], \boldsymbol{\epsilon}=\left[\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right], \boldsymbol{\beta}=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{p}\end{array}\right], \quad$ and $\boldsymbol{x}=\left[\begin{array}{cccc}1 & x_{12} & \ldots & x_{1 p} \\ 1 & x_{22} & \ldots & x_{2 p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n 2} & \ldots & x_{n p}\end{array}\right]$

- $\boldsymbol{X}, \boldsymbol{y}$ are given, you need to estimate β.

MLE - recap

$$
f(\boldsymbol{y} \mid \boldsymbol{X} ; \boldsymbol{\beta}) \propto \exp \left(\frac{-(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})}{2 \sigma^{2}}\right)
$$

- Take Log, we can get:

$$
\begin{equation*}
\frac{-(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})}{2 \sigma^{2}} \tag{1}
\end{equation*}
$$

- Same drill - differentiate and set it to zero.

$$
-X^{\top}(\boldsymbol{y}-\boldsymbol{X} \hat{\beta})=0 \rightarrow X^{\top} \boldsymbol{X} \hat{\beta}=X^{\top} \boldsymbol{y} \rightarrow \hat{\beta}=\left(X^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

- What happens when $p \gg n$? $X^{T} X$ is not invertible.

Ridge regression

- Add a prior to β, i.e. $\boldsymbol{\beta} \sim N\left(0, \lambda I_{p}\right)$, or think of adding a regularization that penalizes large values of $\beta^{\top} \beta$.
- So now we have:

$$
f(\boldsymbol{y} \mid \boldsymbol{X}, \boldsymbol{\beta}) \propto \exp \left(\frac{-(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})}{2 \sigma^{2}}-\lambda \boldsymbol{\beta}^{T} \boldsymbol{\beta}\right)
$$

- Differentiating and setting to zero gives:

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\lambda \boldsymbol{I}_{p}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}
$$

- Phew! - no issues with invertibility of $\boldsymbol{X}^{\top} \boldsymbol{X}$

Exact computation

- If \boldsymbol{X} was dense, how much time would the computation of $\boldsymbol{X}^{\top} \boldsymbol{X}$ take?
- Wait, what is dense?
- Well dense means, \boldsymbol{X} has about $\Theta(n p)$ non-zero elements.

Figure 1: Dense matrix multiplication ${ }^{1}$

- So $O(n)$ computation for each of p^{2} entries, and hence $n p^{2}$.

Sparse matrix data structures

- How do you store a sparse vector?
- All you need is two vectors: one is of the indices of nonzero elements and one is the values.

$*$		$*$	$*$
$*$		$*$	$*$
	$*$		
$*$			$*$

C

A

B

$$
c_{i j}=\sum_{k} A_{i k} \cdot B_{k j}
$$

Figure 2: Sparse matrix multiplication ${ }^{2}$

- If A has nnz non-zeroes, then worst case, the complexity is $O(n \times n n z)$ operations for multiplying a sparse matrix with another dense matrix.

[^0]
Back to regression

- Inverting a $p \times p$ matrix takes $O\left(p^{3}\right)$ time.
- Alternatives: use linear solvers of the form $A \boldsymbol{u}=\boldsymbol{v}$.
- Here $A=\boldsymbol{X}^{\top} \boldsymbol{X}+\lambda / p, \boldsymbol{v}=\boldsymbol{X}^{\top} \boldsymbol{y}$ and $\boldsymbol{u}=\beta$.
- Unless your matrix A has some structure, linear solvers can also be expensive. However, if it does have structure, e.g. its diagonally dominant, etc, then there are nearly linear time solvers.
- Typically for regression, we don't expect to have such structure.
- So, what can be done?

Iterative solvers

- Lets talk about gradient descent type methods.
- Model: $\sum_{i=1}^{n} f(\underbrace{x_{i}}_{\text {data }} ; \underbrace{\beta}_{\text {parameter }})$
- Example of f : negative log-likelihood over iid data-points, e.g. linear regression, logistic regression, etc.
- Goal: $\hat{\beta}=\arg \min _{\beta} f\left(x_{i} ; \beta\right)$
- Lets deal with convex loss functions.

Convex functions

Figure 3: A convex function
$\forall \alpha \in[0,1], f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y)$

Quadratic function $f(y)=y^{2}$

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & =(\alpha x+(1-\alpha) y)^{2} \\
& =\alpha^{2} x^{2}+(1-\alpha)^{2} y^{2}+2 \alpha(1-\alpha) x y \\
& \leq \alpha^{2} x^{2}+(1-\alpha)^{2} y^{2}+\alpha(1-\alpha)\left(x^{2}+y^{2}\right) \\
& =\alpha x^{2}+(1-\alpha) y^{2}
\end{aligned}
$$

- Where did I use $\alpha \in[0,1]$?

Convex functions $f(y)=|y|$

Figure 4: $f(y)=|y|$

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & =|\alpha x+(1-\alpha) y| \\
& \leq|\alpha x|+|(1-\alpha) y| \\
& \leq \alpha|x|+(1-\alpha)|y|
\end{aligned}
$$

Local optima is also global optima

Theorem

Consider an optimization problem $\min _{x} f(x)$ where f is convex. Let x^{*} be a local minima. Prove that it is also a global minima.

Proof.

- By definition, $\exists p>0$, such that $\forall x \in B\left(x^{*}, p\right), f(x) \geq f\left(x^{*}\right)$.
- If x^{*} is not the global optima, $z \notin B\left(x^{*}, p\right)$ such that $f(z)<f\left(x^{*}\right)$.
- Take $t \in[0,1]$ and the point $y=t x^{*}+(1-t) z$.

$$
f(y) \leq t f\left(x^{*}\right)+(1-t) f(z)<f\left(x^{*}\right)
$$

- Now $\left|y-x^{*}\right|=(1-t)\left|z-x^{*}\right|$. If we take t large enough such that $(1-t)\left|z-x^{*}\right| \leq p$, then $y \in B\left(x^{*}, p\right)$ but $f(y)<f\left(x^{*}\right)$, which is a contradiction.

Properties of convex functions

- Non-negative linear combinations of convex functions is also convex.
- For example $a f(x)+b g(x)$ where f, g are both convex and $a, b \geq 0$ is also convex.
- A convex function composed with an affine function is also convex.
- Point-wise maxima of convex functions is convex.

Properties of convex functions

- Compositions of convex functions not necessarily convex
- f, g convex.
- Is $f-g$ convex?
- Is $f g$ convex?

Convex functions: other definitions

- First order:

$$
\langle x-y, \nabla f(x)-\nabla f(y)\rangle \geq 0
$$

- Second order:

$$
\nabla^{2} f(x) \succeq 0
$$

- Example: $f(x)=x^{2} .(x-y)^{2}>0$ and $f^{\prime \prime}(x)=2 \geq 0$.
- Example: $f(x)=\log \left(1+e^{x}\right)$.
- $f^{\prime}(x)=\frac{1}{1+e^{-x}}$ is monotonically increasing with x and so the first order condition is satisfied.
- Second order: $f^{\prime \prime}(x)=f(x)(1-f(x)) \geq 0$

Strongly convex functions - add curvature

- First order:

$$
\langle x-y, \nabla f(x)-\nabla f(y)\rangle \geq \mu\|x-y\|^{2}
$$

- Second order:

$$
\nabla^{2} f(x) \succeq \mu \prime
$$

- So you add a margin to each inequality.

Gradient descent

$$
\beta \leftarrow \beta-\alpha \nabla f(\beta)
$$

Figure 5: Convex function minimization with gradient descent

Step size

Figure 6: Choice of step size is crucial

Reality of gradient descent for a nonconvex function

Figure 7: Very nonconvex function

Newton Raphson

Figure 8: Newton Raphson ${ }^{4}$

[^1]
Newton Raphson cont.

- GD takes into account only first order information.
- NR also takes second order information.
- In particular it uses the Hessian,

$$
H(i, j)=\frac{\partial^{2} f}{\partial \theta_{i} \partial \theta_{j}}, \text { where } i, j \in\{1, \ldots, k\}
$$

- Lets try to minimize a quadratic function:

$$
f=\mathbf{a}+\mathbf{b}^{T} \boldsymbol{\theta}+\frac{1}{2} \boldsymbol{\theta}^{T} C \boldsymbol{\theta}
$$

- C is positive semidefinite and so this is a convex function.
- We can minimize the function by differentiating it and by setting the result equal to 0 :

$$
\begin{aligned}
& \nabla f\left(\boldsymbol{\theta}^{*}\right)=\mathbf{b}+C \boldsymbol{\theta}^{*}=0 \\
& \boldsymbol{\theta}^{*}=-C^{-1} \mathbf{b}
\end{aligned}
$$

Newton Raphson cont.

- In the neighborhood of $\boldsymbol{\theta}_{t}$, we can use the approximation:

$$
\begin{equation*}
f\left(\boldsymbol{\theta}^{(t)}+\mathbf{h}\right) \approx f\left(\boldsymbol{\theta}^{(t)}\right)+\nabla f\left(\boldsymbol{\theta}^{(t)}\right)^{T} \mathbf{h}+\frac{1}{2} \mathbf{h}^{T} H\left(\boldsymbol{\theta}^{(t)}\right) \mathbf{h} . \tag{2}
\end{equation*}
$$

- Therefore the general updating rule is

$$
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)}-\boldsymbol{H}^{-1}\left(\boldsymbol{\theta}^{(t)}\right) \cdot \nabla f\left(\boldsymbol{\theta}^{(t)}\right)
$$

- You can use a stepsize here as well.

Gradient Descent

- for $t=1: T$ (or until convergence)
- Do $\beta_{t+1} \leftarrow \beta_{t}-\alpha \nabla f(\beta)$

Theorem

Let β^{*} is the global minima, and the second derivative is bounded as $\mu I \preceq H(\beta) \preceq L I$. Then with $\alpha=2 /(L+\mu)$, gradient descent converges geometrically, i.e.

$$
\left\|\beta_{t+1}-\beta^{*}\right\| \leq \frac{L-\mu}{L+\mu}\left\|\beta_{t}-\beta^{*}\right\|
$$

Proof

- Lets look at the distance from the optima:

$$
\begin{aligned}
\beta_{t+1}-\beta^{*} & =\beta_{t}-\beta^{*}-\alpha\left(\nabla f\left(\beta_{t}\right)-\nabla f\left(\beta^{*}\right)\right) \\
& =\beta_{t}-\beta^{*}-\alpha H\left(z_{t}\right)\left(\beta_{t}-\beta^{*}\right) \\
& =\left(I-\alpha \nabla^{2} f\left(z_{t}\right)\right)\left(\beta_{t}-\beta^{*}\right)
\end{aligned}
$$

- Now take norm of both sides and use Triangle.

$$
\begin{aligned}
\left\|\beta_{t+1}-\beta^{*}\right\| & \leq\left\|I-\alpha H\left(z_{t}\right)\right\|\left\|\beta_{t}-\beta^{*}\right\| \\
& \leq \max (|1-\alpha \mu|,|1-\alpha L|)\left\|\beta_{t}-\beta^{*}\right\|
\end{aligned}
$$

Proof

- Pick $\alpha=$ arg min $\max (|1-\alpha \mu|,|1-\alpha L|)=2 /(L+\mu)$

Linear convergence

- Set $\alpha=2 /(L+\mu)$. You get

$$
\left\|\beta_{t+1}-\beta^{*}\right\| \leq \frac{L-\mu}{L+\mu}\left\|\beta_{t}-\beta^{*}\right\|
$$

- Finally after T iterations, we have:

$$
\left\|\beta_{T+1}-\beta^{*}\right\| \leq\left(\frac{L-\mu}{L+\mu}\right)^{T}\left\|\beta_{1}-\beta^{*}\right\|
$$

- This is a typical "linear" contraction result.

Newton Raphson

Theorem

Let β^{*} is the global minima, and the second derivative is L Lipschitz, i.e. $\left\|H(x)-H\left(x^{\prime}\right)\right\| \leq \kappa\left\|x-x^{\prime}\right\|$ and $\left\|H^{-1}\right\| \leq 1 / \mu$. Then with $\alpha=1$, Newton Raphson converges quadratically, i.e.

$$
\left\|\beta_{t+1}-\beta^{*}\right\| \leq \kappa / \mu\left\|\beta_{t}-\beta^{*}\right\|^{2}
$$

- Note that this is useful only when $\left\|\beta_{t+1}-\beta^{*}\right\| \ll 1$

Proof

$$
\begin{aligned}
\beta_{t+1}-\beta^{*} & =\beta_{t}-\beta^{*}-H^{-1}\left(\beta_{t}\right)\left(\nabla f\left(\beta_{t}\right)-\nabla f\left(\beta^{*}\right)\right) \\
& =\beta_{t}-\beta^{*}-H^{-1}\left(\beta_{t}\right) H\left(z_{t}\right)\left(\beta_{t}-\beta^{*}\right) \\
& =\left(I-H^{-1}\left(\beta_{t}\right) H\left(z_{t}\right)\right)\left(\beta_{t}-\beta^{*}\right) \\
& =H^{-1}\left(\beta_{t}\right)\left(H\left(\beta_{t}\right)-H\left(z_{t}\right)\right)\left(\beta_{t}-\beta^{*}\right) \\
\left\|\beta_{t+1}-\beta^{*}\right\| & \leq\left\|H^{-1}\left(\beta_{t}\right)\right\|\left\|H\left(\beta_{t}\right)-H\left(z_{t}\right)\right\|\left\|\beta_{t}-\beta^{*}\right\| \\
& \leq \kappa / \mu\left\|\beta_{t}-z_{t}\right\|\left\|\beta_{t}-\beta^{*}\right\| \\
& \leq \kappa / \mu\left\|\beta_{t}-\beta^{*}\right\|^{2}
\end{aligned}
$$

Scalability concerns

- You have to calculate the gradient every iteration.
- Take ridge regression.
- You want to minimize $1 / n\left((\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})-\lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta}\right)$
- Take a derivative: $\left(-2 \boldsymbol{X}^{\top}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})-2 \lambda \boldsymbol{\beta}\right) / n$
- Grad descent update takes $\beta_{t+1} \leftarrow \boldsymbol{\beta}_{t}+\alpha\left(\boldsymbol{X}^{\top}\left(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}_{t}\right)+\lambda \boldsymbol{\beta}_{t}\right)$
- What is the complexity?
- Trick: first compute $\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}$.
- $n p$ for matrix vector multiplication, $n n z(\boldsymbol{X})$ for sparse matrix vector multiplication.
- Remember the examples with humongous n and p ?

Acknowledgment

Cho-Jui Hsieh and Christopher De Sa's large scale ML classes.

[^0]: ${ }^{2}$ Borrowed from Grey Ballard and Alex Druinsky, SIAM conf. on Lin. Algenbra

[^1]: ${ }^{4}$ Borrowed from Nick Alger, math.stackexchange.com

