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Technical things you need for this lecture

• What is the log likelihood and what is MLE– and how to get the

MLE?

• How to do derivatives w.r.t a vector. (See section 2.4) https:

//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

• What is the Hessian of a function?

• Eigenvalues of a matrix and how they change when you add a

multiple of identity.

• What is a Positive Semi-Definite (PSD) matrix?

• What is a convex function (Jensen’s inequality) and what operations

preserves convexity? See 2.3 in

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

• What is a strongly convex function and how can you relate to the

Hessian.

• What is the mean value theorem in Calculus, we will do the vector

version of this.

• What is a Lipschitz continuous function?
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Linear regression: recap

Given n pairs (xxx i , yi ) ∈ <
p+1×1, consider the model:

yyy = XXXβββ + εεε εi ∼ N(0, σ2)

where:

yyy =


Y1

Y2
...

Yn

 , εεε =


ε1

ε2
...

εn

 ,βββ =



β0

β1

β2
...

βp


, and xxx =


1 x12 . . . x1p

1 x22 . . . x2p
...

...
. . .

...

1 xn2 . . . xnp



• XXX ,yyy are given, you need to estimate βββ.
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MLE - recap

f (yyy |XXX ;βββ) ∝ exp(
−(yyy −XXXβββ)T (yyy −XXXβββ)

2σ2
)

• Take Log, we can get:

−(yyy −XXXβββ)T (yyy −XXXβββ)

2σ2
(1)

• Same drill – differentiate and set it to zero.

−XXXT (yyy −XXX β̂ββ) = 0→ XXXTXXX β̂ββ = XXXTyyy → β̂ββ = (XXXTXXX )−1XXXTyyy

• What happens when p � n? XXXTXXX is not invertible.
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Ridge regression

• Add a prior to βββ, i.e. βββ ∼ N(0, λIIIp), or think of adding a

regularization that penalizes large values of βββTβββ.

• So now we have:

f (yyy |XXX ,βββ) ∝ exp(
−(yyy −XXXβββ)T (yyy −XXXβββ)

2σ2
− λβββTβββ)

• Differentiating and setting to zero gives:

β̂ββ = (XXXTXXX + λIIIp)−1XXXTyyy

• Phew! – no issues with invertibility of XXXTXXX
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Exact computation

• If XXX was dense, how much time would the computation of XXXTXXX

take?

• Wait, what is dense?

• Well dense means, XXX has about Θ(np) non-zero elements.

Figure 1: Dense matrix multiplication1

• So O(n) computation for each of p2 entries, and hence np2.

1Borrowed from Cho-Jui Hsieh’s classnotes at UC-Davis. 5



Sparse matrix data structures

• How do you store a sparse vector?

• All you need is two vectors: one is of the indices of nonzero elements

and one is the values.

Figure 2: Sparse matrix multiplication2

• If A has nnz non-zeroes, then worst case, the complexity is O(n × nnz)

operations for multiplying a sparse matrix with another dense matrix.

2Borrowed from Grey Ballard and Alex Druinsky, SIAM conf. on Lin. Algenbra
6



Back to regression

• Inverting a p × p matrix takes O(p3) time.

• Alternatives: use linear solvers of the form Auuu = vvv .

• Here A = XXXTXXX + λIp, vvv = XXXTyyy and uuu = βββ.

• Unless your matrix A has some structure, linear solvers can also be

expensive. However, if it does have structure, e.g. its diagonally

dominant, etc, then there are nearly linear time solvers.

• Typically for regression, we don’t expect to have such structure.

• So, what can be done?
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Iterative solvers

• Lets talk about gradient descent type methods.

• Model:
n∑

i=1

f ( xi︸︷︷︸
data

; β︸︷︷︸
parameter

)

• Example of f : negative log-likelihood over iid data-points, e.g. linear

regression, logistic regression, etc.

• Goal: β̂ = arg min
β

f (xi ;β)

• Lets deal with convex loss functions.
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Convex functions

Figure 3: A convex function

∀α ∈ [0, 1], f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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Quadratic function f (y) = y2

f (αx + (1− α)y) = (αx + (1− α)y)2

= α2x2 + (1− α)2y2 + 2α(1− α)xy

≤ α2x2 + (1− α)2y2 + α(1− α)(x2 + y2)

= αx2 + (1− α)y2

• Where did I use α ∈ [0, 1]?
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Convex functions f (y) = |y |

Figure 4: f (y) = |y |

f (αx + (1− α)y) = |αx + (1− α)y |

≤ |αx |+ |(1− α)y |

≤ α|x |+ (1− α)|y |
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Local optima is also global optima

Theorem
Consider an optimization problem min

x
f (x) where f is convex. Let x∗ be a

local minima. Prove that it is also a global minima.

Proof.

• By definition, ∃p > 0, such that ∀x ∈ B(x∗, p), f (x) ≥ f (x∗).

• If x∗ is not the global optima, z 6∈ B(x∗, p) such that f (z) < f (x∗).

• Take t ∈ [0, 1] and the point y = tx∗ + (1− t)z.

f (y) ≤ tf (x∗) + (1− t)f (z) < f (x∗)

• Now |y − x∗| = (1− t)|z − x∗|. If we take t large enough such that

(1− t)|z − x∗| ≤ p, then y ∈ B(x∗, p) but f (y) < f (x∗), which is a

contradiction.
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Properties of convex functions

• Non-negative linear combinations of convex functions is also convex.

• For example af (x) + bg(x) where f , g are both convex and a, b ≥ 0

is also convex.

• A convex function composed with an affine function is also convex.

• Point-wise maxima of convex functions is convex.
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Properties of convex functions

• Compositions of convex functions not necessarily convex

• f , g convex.

• Is f − g convex?

• Is fg convex?
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Convex functions: other definitions

• First order:

〈x − y ,∇f (x)−∇f (y)〉 ≥ 0

• Second order:

∇2f (x) � 0

• Example: f (x) = x2. (x − y)2 > 0 and f ′′(x) = 2 ≥ 0.

• Example: f (x) = log(1 + ex ).

• f ′(x) =
1

1 + e−x
is monotonically increasing with x and so the first

order condition is satisfied.

• Second order: f ′′(x) = f (x)(1− f (x)) ≥ 0
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Strongly convex functions – add curvature

• First order:

〈x − y ,∇f (x)−∇f (y)〉 ≥ µ‖x − y‖2

• Second order:

∇2f (x) � µI

• So you add a margin to each inequality.
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Gradient descent

β ← β − α∇f (β)

Figure 5: Convex function minimization with gradient descent

3
3From C. De Sa’s class at Cornell
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Step size

Figure 6: Choice of step size is crucial
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Reality of gradient descent for a nonconvex function

Figure 7: Very nonconvex function
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Newton Raphson

Figure 8: Newton Raphson4

4Borrowed from Nick Alger, math.stackexchange.com
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Newton Raphson cont.

• GD takes into account only first order information.

• NR also takes second order information.

• In particular it uses the Hessian,

H(i , j) =
∂2f

∂θi∂θj
, where i , j ∈ {1, . . . , k},

• Lets try to minimize a quadratic function:

f = a + bTθθθ +
1

2
θθθTCθθθ.

• C is positive semidefinite and so this is a convex function.

• We can minimize the function by differentiating it and by setting the

result equal to 0:

∇f (θθθ∗) = b + Cθθθ∗ = 0

θθθ∗ = −C−1b
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Newton Raphson cont.

• In the neighborhood of θθθt , we can use the approximation:

f (θθθ(t) + h) ≈ f (θθθ(t)) +∇f (θθθ(t))T h +
1

2
hTH(θθθ(t))h. (2)

• Therefore the general updating rule is

θθθ(t+1) = θθθ(t) − H−1(θθθ(t)) · ∇f (θθθ(t))

• You can use a stepsize here as well.
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Gradient Descent

• for t = 1 : T (or until convergence)

• Do βt+1 ← βt − α∇f (β)

Theorem
Let β∗ is the global minima, and the second derivative is bounded as

µI � H(β) � LI . Then with α = 2/(L + µ), gradient descent converges

geometrically, i.e.

‖βt+1 − β
∗‖ ≤ L− µ

L + µ
‖βt − β∗‖

23



Proof

• Lets look at the distance from the optima:

βt+1 − β
∗ = βt − β∗ − α(∇f (βt)−∇f (β∗))

= βt − β∗ − αH(zt)(βt − β∗)

= (I − α∇2f (zt))(βt − β∗)

• Now take norm of both sides and use Triangle.

‖βt+1 − β
∗‖ ≤ ‖I − αH(zt)‖‖βt − β∗‖

≤ max(|1− αµ|, |1− αL|)‖βt − β∗‖
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Proof

• Pick α = arg min max(|1− αµ|, |1− αL|) = 2/(L + µ)
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Linear convergence

• Set α = 2/(L + µ). You get

‖βt+1 − β
∗‖ ≤ L− µ

L + µ
‖βt − β∗‖

• Finally after T iterations, we have:

‖βT+1 − β
∗‖ ≤

(
L− µ
L + µ

)T
‖β1 − β

∗‖

• This is a typical “linear” contraction result.
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Newton Raphson

Theorem
Let β∗ is the global minima, and the second derivative is L Lipschitz, i.e.

‖H(x)− H(x ′)‖ ≤ κ‖x − x ′‖ and ‖H−1‖ ≤ 1/µ. Then with α = 1, Newton

Raphson converges quadratically, i.e.

‖βt+1 − β
∗‖ ≤ κ/µ‖βt − β∗‖2

• Note that this is useful only when ‖βt+1 − β
∗‖ � 1
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Proof

βt+1 − β
∗ = βt − β∗ − H−1(βt)(∇f (βt)−∇f (β∗))

= βt − β∗ − H−1(βt)H(zt)(βt − β∗)

= (I − H−1(βt)H(zt))(βt − β∗)

= H−1(βt)(H(βt)− H(zt))(βt − β∗)

‖βt+1 − β
∗‖ ≤ ‖H−1(βt)‖‖H(βt)− H(zt)‖‖βt − β∗‖

≤ κ/µ‖βt − zt‖‖βt − β∗‖

≤ κ/µ‖βt − β∗‖2
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Scalability concerns

• You have to calculate the gradient every iteration.

• Take ridge regression.

• You want to minimize 1/n
(

(yyy −XXXβββ)T (yyy −XXXβββ)− λβββTβββ
)

• Take a derivative: (−2XXXT (yyy −XXXβββ)− 2λβββ)/n

• Grad descent update takes βββt+1 ← βββt + α(XXXT (yyy −XXXβββt) + λβββt)

• What is the complexity?

• Trick: first compute yyy −XXXβββ.

• np for matrix vector multiplication, nnz(XXX ) for sparse matrix vector

multiplication.

• Remember the examples with humongous n and p?
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