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Scalability concerns

• You have to calculate the gradient every iteration.

• Take ridge regression.

• You want to minimize 1/n
(

(yyy −XXXβββ)T (yyy −XXXβββ)− λβββTβββ
)

• Take a derivative: (−2XXXT (yyy −XXXβββ)− 2λβββ)/n

• Grad descent update takes βββt+1 ← βββt + α(XXXT (yyy −XXXβββt) + λβββt)

• What is the complexity?

• Trick: first compute yyy −XXXβββ.

• np for matrix vector multiplication, nnz(XXX ) for sparse matrix vector

multiplication.

• Remember the examples with humongous n and p?
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What will you need for this class

• Stuff you should know from the last lecture.

• The knowledge of conditional expectation.

• Law of total expectation, which is also known as the tower property.
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So what to do?

• For t = 1 : T

• Draw σt with replacement from n

• βt+1 = βt − α∇f (xσt ;βt)

• In expectation (over the randomness of the index you chose), for a

fixed β,

E [∇f (xσt ;β)] =

∑
i ∇f (xi ;β)

n

• Does this also converge?
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Convergence

Figure 1: Gradient descent vs Stochastic gradient descent
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Convergence

• Let ∇f (X ;β) be the full derivative.

βt+1 − β
∗ = βt − β∗ − α∇f (xσt ;βt)

‖βt+1 − β
∗‖2

= ‖βt − β∗‖2 + α2‖∇f (xσt ;βt)‖2 − 2α〈∇f (xσt ;βt), βt − β∗〉

• Take the expectation

E [‖βt+1 − β
∗‖2] = E [‖βt − β∗‖2] + α2E‖∇f (xσt ;βt)‖2

− 2αE〈∇f (xσt ;βt), βt − β∗〉
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Convergence

• Let ∇f (X ;β) be the full derivative.

• How do we do expectation of the cross product

E〈∇f (xσt ;βt), βt − β∗〉 = EE [〈∇f (xσt ;βt), βt − β∗〉|σ1, . . . , σt−1]

= E〈∇f (X ;βt), βt − β∗〉

• Now we will use strong convexity. Recall:

〈β − β′,∇f (X ;β)−∇f (X ;β′)〉 ≥ µ‖β − β′‖2

• Take β = βt and β′ = β∗:

〈βt − β∗,∇f (X ;βt)−∇f (X ;β∗)︸ ︷︷ ︸
0

〉 ≥ µ‖βt − β∗‖2
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Convergence

•

E‖∇f (xσt ;βt)‖2 = EE
[
‖∇f (xσt ;βt)‖2

∣∣∣σ1, . . . , σt−1]

=
1

n

∑
i

E
[
‖∇f (xi ;βt)‖2

]
≤ M We assume this
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SGD cont.

• So by total expectation rule,

E [‖βt+1 − β
∗‖2] ≤ (1− 2αµ)E [‖βt − β∗‖2] + α2M

• So SGD is converging to a noise ball.

• How to remedy this?
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SGD stepsize

• Assume you are far away from the noise ball.

• ‖βt − β∗‖2 ≥ αM/µ.

• Then,

E [‖βt+1 − β
∗‖2|βt ] ≤ (1− 2αµ)E‖βt − β∗‖2 + αµE‖βt − β∗‖2

≤ (1− αµ)E‖βt − β∗‖2 If αµ < 1

E [‖βT − β
∗‖2] ≤ e−αµTC ,

• C is the initial loss

• It takes 1/αµ logM steps to achieve M factor contraction.
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Tradeoff

• Recall that the size of the noise ball is

lim
t→∞

E [‖βt+1 − β
∗‖2] ≤ αM

2µ

• So the size is O(α), i.e. for larger α we converge to a larger noise

ball.

• But convergence time inversely proportional to step size α.

• So there is a tradeoff.
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What if we allow the step size to vary

• We will set the stepsize as 1/t, and check the following by induction.

Theorem
If we use αt = a/(t + 1), for a > 1/2µ we have:

E [‖βt − β0‖
2] ≤ max(‖β1 − β∗‖2,Y )

t + 1

where Y =
Ma2

2aµ− 1
.

Proof.
We will do this by induction. First note Step 1 is obviously true. Now

assume that the above holds for t. We will show that it holds for

t + 1.
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What if we allow the step size to vary

• Let C = max(‖β1 − β
∗‖2,Y )

• Recall that we have:

E [‖βt+1 − β
∗‖2] ≤ (1− 2αtµ)E‖βt − β∗‖2 + α2tM

≤ (1− 2aµ/(t + 1)))
Y

t + 1
+

Ma2

(t + 1)2

=
Y

t + 1
− a

(t + 1)2
(2µY −Ma)

• Set a(2Yµ−Ma) = Y , i.e. Y =
Ma2

2aµ− 1

• So

E [‖βt+1 − β
∗‖2] ≤ Y

(
1

t + 1
− 1

(t + 1)(t + 2)

)
=

Y

t + 2
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An example

• min
β

1

n

∑
i

(xi − β)2

• Assume that x̄ = 0

• SGD update with fixed α is as follows:

β1 = β0 + α(xσt − β0) = (1− α)β0 + αxσ0

βt = (1− α)tβ0 + α
∑
i<t

(1− α)t−i−1xσi︸ ︷︷ ︸
Behaves like a N(0,Ct)

where Ct =
1− (1− α)2t

1− (1− α)2
σ2, where σ2 =

∑
i

x2i /n.

• Doesn’t go away, unless α goes to zero.
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An example - minibatch SGD

• Use average of a batch of size b.

• βt = (1− α)tβ0 + α
∑
i<t

(1− α)i gi︸︷︷︸
average of B datapoints.

• Let Yi = 1 if i ∈ minibatch and 0 else.

• If you do without replacement sampling, P(Yi = 1) = E [Yi ] = B/n.

•

gi =
1

B

n∑
j=1

Yjxj

E [g2i ] ≈ 1

B2

n∑
j=1

E [Y 2
j ]x2i =

1

B

1

n

∑
j

x2j =
σ2

B

• Can you make the above step rigorous?

• So, from the previous page, the variance term gets shrunk by B.
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An example - averaged SGD

• Use average of SGD updates.

•

βt = (1− α)tβ0 + α
∑
i<t

(1− α)i xσi

1

T

∑
t

βt =
1

T

T∑
t=1

(1− α)tβ0 + α
1

T

T∑
t=1

∑
i<t

(1− α)t−i−1xσi

=
1− α
T

1− (1− α)T

α
β0︸ ︷︷ ︸

Goes to zero

+α
1

T

T−t−1∑
j=0

(1− α)t−1−jxσt︸ ︷︷ ︸
Behaves like N(0,D/t)

• So, by averaging, you basically are reducing the noise ball size and

converging to the truth.
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Averaging

• Averaging for more general quadratic functions have the same

behavior.

• For general strongly convex functions, we can’t have ”constant” step

sizes, but we can have much larger stepsizes – t−α for α ∈ (1/2, 1).

• Compare this to 1/t for SGD.

• One can do statistical inference with averaging, since we know that

the averaged vector converges to a normal ball of a certain variance.

If you can estimate this variance, then, you can give confidence

intervals for your parameter of interest, not just point estimates.
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Final thoughts

• As it turns out, the stepsize for SGD is ”optimal”

• For strongly convex function minimization, no algorithm making T

noisy gradient computations will have accuracy better than c/T .

Error in computation stepsize

T iterations per iter

GD exp(−cT ) O(n) Fixed

SGD 1/T O(1) αt = 1/t

batch SGD 1/TB O(B) αt = 1/t

average SGD 1/T O(1) αt = 1/tα, α ∈ (0.5, 1)

• Typically you use 32 as batchsize as default.
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