College of Natural Sciences

SDS 385: Stat Models for Big Data
Lecture 3: GD and SGD cont.

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin

https://psarkar.github.io/teaching

Scalability concerns

You have to calculate the gradient every iteration.

Take ridge regression.

You want to minimize 1/n ((y —XB)T(y - XB) —)\ﬂTﬂ>

Take a derivative: (—2X T (y — XB) — 2A8)/n
e Grad descent update takes 8,1 + B¢ + a(XT(y — XBt) + A\Bt)
What is the complexity?

e Trick: first compute y — X8.

e np for matrix vector multiplication, nnz(X) for sparse matrix vector
multiplication.

e Remember the examples with humongous n and p?

What will you need for this class

e Stuff you should know from the last lecture.
e The knowledge of conditional expectation.

e Law of total expectation, which is also known as the tower property.

e Fort=1:T
e Draw o; with replacement from n
o Bii1 =t — aVf(xe,; br)
e In expectation (over the randomness of the index you chose), for a
fixed 3,

E[Vf(xos: B)] = 2.1 VI B) VZ(XI; A

e Does this also converge?

Convergence

Figure 1: Gradient descent vs Stochastic gradient descent

Convergence

e Let VF(X;) be the full derivative.

Ber1 — B =Bt — B* — aVF(xoy; Bt)
I1Bes1 — B¥112
= |18t = B*11 + a® [V (xop; Be)|* — 2a(VF(xoy; Be), Bt — B)

e Take the expectation

ElBes1 — B2 = ElllBt — B*|12] + o2 E||V F (xoy: Br) |2
— 20E(Vf(xoys: Bt), Bt — B*)

Convergence

e Let VF(X; B) be the full derivative.
e How do we do expectation of the cross product

E<Vf(XUt; ﬂt)vﬁt - ﬁ*> = EE[<Vf(X0'tv ﬁt)?ﬁt - 5*>|017 R Ut*l]
= E(VF(X; Bt), Bt — B7)

Convergence

e Let VF(X; B) be the full derivative.
e How do we do expectation of the cross product

E<Vf(XUt; ﬂt)vﬁt - ﬁ*> = EE[<Vf(X0'tv Bt)?ﬁt - 5*>|Ulv R o’t*l]
= E(VF(X; Bt), Bt — B7)

e Now we will use strong convexity. Recall:

(B— B, VF(X;B) = VF(X; B) > ullB - 8|12

Convergence

e Let VF(X; B) be the full derivative.
e How do we do expectation of the cross product

E<Vf(XUt; ﬂt)vﬁt - ﬁ*> = EE[<Vf(X0'tv Bt)?ﬁt - 5*>|Ulv R o’t*l]
= E(VF(X; Bt), Bt — B7)

e Now we will use strong convexity. Recall:

(B— B, VF(X;B) = VF(X; B) > ullB - 8|12

e Take 8 =3¢ and 8’ = B*:

(Br — B, VF(X; Be) — VF(X; B%)) > ullBe — B
0

Convergence

e Let VF(X; B) be the full derivative.

e How do we do expectation of the cross product

E<Vf(XO't; Bt)7 ﬂt - ﬂ*> - EE[<Vf(XUt; Bt)v@t - 6*>|017 ceey Ut—l]
= E(Vf(X;Bt), Bt — B)
> pE||Be — ¥

Convergence

E|IVf(xop: Be)|* = EE [HVf(Xat;,@t llz‘ 01+, 0¢-1]
= - Z [I1VF(xi: 80)11)

M We assume this

IN

e So by total expectation rule,

E[llBes1 — BI°] < (1 — 2ap)E[l|Be — B*[%] + o*M

e So SGD is converging to a noise ball.

e How to remedy this?

SGD stepsize

Assume you are far away from the noise ball.
18 = B*I% = aM/p.
e Then,

EllBer1 — BI718e] < (1 — 2ap)E||Be — 87 + auE||Be — 572
<@ —au)E|Br—B*? Iap<1

EllBr - 8Pl < e T,

IN

e C is the initial loss

It takes 1/aulog M steps to achieve M factor contraction.

10

Tradeoff

Recall that the size of the noise ball is

aM
Jim EllBes - 871P < G

e So the size is O(a), i.e. for larger a we converge to a larger noise
ball.

But convergence time inversely proportional to step size a.

e So there is a tradeoff.

11

What if we allow the step size to vary

e We will set the stepsize as 1/t, and check the following by induction.

Theorem
If we use ay = a/(t+1), for a> 1/2u we have:

max([|81 — 8%, Y)
t+1

ENB: — Boll?] <

2
where Y = Mia.
2ap — 1

Proof.
We will do this by induction. First note Step 1 is obviously true. Now

assume that the above holds for t. We will show that it holds for
t+1.]

12

What if we allow the step size to vary

o Let C =max(||f1 — B*|2, Y)

e Recall that we have:

ElllBes1 — AP < (1 — 20ep)E||B: — B*[% + a2M

2
Y Ma
<(1-2 t+1))— +
< -2om/(t+ D) g+ gy
Y a
==~ (2uY — Ma
SR TERIvACH)
. Ma?
e Set a2Yu—Ma)=Y,ie Y = Zan 1

e So

%2 1 1 Y
Ellfe -5 18 < Y (11 - o) ~ £

13

An example

° mﬂin % Z(X,' — ,8)2

1
e Assume that x =0

e SGD update with fixed « is as follows:
B1 = Bo + alxor — Bo) = (1 — @)y + axog

t t—i—1
Br=(1—-a)fy+a Z(l—a) ! Xo;
i<t
Behaves like a N(0, C¢)

1-(1-a)?t 5

_ 2 2
Where Ct = m@' , Where g = ;X, /n.

e Doesn't go away, unless a goes to zero.

14

An example - minibatch SGD

e Use average of a batch of size b.
° [t = (l—a)t,6’0+aZ(l—oz)’ g
i<t Y .
average of B datapoints.
e Let Y; =1 if i € minibatch and 0 else.
e If you do without replacement sampling, P(Y; =1) = E[Y;] = B/n.
[]
1 n
&= 52 Y%
Jj=1
2 1 & 2, 2 11 2 o?
Elgi]~ EZE[YJ' Ixi = E;ij =5
J=1 J

e Can you make the above step rigorous?

e So, from the previous page, the variance term gets shrunk by B.

15

An example - averaged SGD

e Use average of SGD updates.

Br=1-a)By+ad (1- a)ixai

i<t
1 T 1
L RTED)y (EL
t t=1 t=1li<t
T—t—1
l1—al—(1-— i
_ al-(1-a)" 5 +a7 Z (1-a) 1

T «

Goes to zero

Behaves like N(0, D/t)

e So, by averaging, you basically are reducing the noise ball size and
converging to the truth.

16

e Averaging for more general quadratic functions have the same
behavior.
e For general strongly convex functions, we can’t have " constant” step
sizes, but we can have much larger stepsizes — t~ ¢ for a € (1/2,1).
e Compare this to 1/t for SGD.

e One can do statistical inference with averaging, since we know that
the averaged vector converges to a normal ball of a certain variance.
If you can estimate this variance, then, you can give confidence
intervals for your parameter of interest, not just point estimates.

17

Final thoughts

e As it turns out, the stepsize for SGD is " optimal”

e For strongly convex function minimization, no algorithm making T

noisy gradient computations will have accuracy better than ¢/ T.

Error in computation stepsize
T iterations per iter
GD exp(—cT) O(n) Fixed
SGD 1/T 0(1) ar =1/t
batch SGD 1/TB O(B) ar =1/t
average SGD 1T 0(1) ar=1/t% a € (0.5,1)

e Typically you use 32 as batchsize as default.

18

