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Polyak’s heavy ball method

Figure 1: B. Polyak

•
βt+1 = βt − α∇f (βt) + θ(βt − βt−1)︸ ︷︷ ︸

momentum term
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Momentum
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Recall GD?

• For a L smooth and µ convex optimization problem, i.e. µI � H � LI ,

‖βt − β∗‖ ≤
(
κ− 1

κ+ 1

)t
‖β0 − β

∗‖

where κ = L/µ i.e. the condition number of the Hessian.

• For the same problem, using Polyak’s method we can show that,∥∥∥∥∥
[
βt+1 − β

∗

βt − β∗

]∥∥∥∥∥ ≤
(√

κ− 1√
κ+ 1

)t ∥∥∥∥∥
[
β1 − β

∗

β0 − β
∗

]∥∥∥∥∥
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Momentum method

• Recall we have:

βt+1 − β
∗ = (1 + θ)(βt − β∗)− α∇f (βt)− θ(βt−1 − β

∗)

= ((1 + θ)I − α∇2f (zt))(βt − β∗)− θ(βt−1 − β
∗)

• This gives the dynamic system:[
βt+1 − β

∗

βt − β∗

]
≤

[
(1 + θ)I − α∇2f (zt) −θI

I 0

][
βt − β∗

βt−1 − β
∗

]
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Momentum method

• We need to upper bound the norm of

M :=

[
(1 + θ)I − α∇2f (zt) −θI

I 0

]
• It can be shown that:

‖M‖ =

∥∥∥∥∥
[

(1 + θ)− αΛ −θI
I 0

]∥∥∥∥∥
= max

i

∥∥∥∥∥
[

(1 + θ)− αλi −θ
1 0

]∥∥∥∥∥
• Eigenvalues of the 2× 2 matrix can be written as a solution of the

following quadratic:

σ2 − σ((1 + θ)− αλi ) + θ = 0
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Momentum method - simple example

• Take f (x) =
h

2
x2.

• Now M :=

[
1 + θ − αh −θ

1 0

]
• The two eigenvalues of this matrix are:

σ1 =
1

2

(
1− αh + θ +

√
(1 + θ − αh)2 − 4θ

)
σ2 =

1

2

(
1− αh + θ −

√
(1 + θ − αh)2 − 4θ

)

• When (1 + θ − αh)2 < 4θ, then the roots are complex conjugates,

and each have the same absolute value
√
θ
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Momentum method - simple example
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Momentum method

• If ((1 + θ)− αλi )
2 ≤ 4θ, the roots are imaginary and the magnitude

is
√
θ

• This is satisfied if

α ∈

[
(1−

√
θ)2

λi
,

(1 +
√
θ)2

λi

]

• But recall that λi ∈ [µ, L].

• If we set 1−
√
αL = −(1−√αµ), then we have

α =

(
2√

L +
√
µ

)2

θ =

(√
κ− 1√
κ+ 1

)2

• So the new contraction factor becomes
√
κ− 1√
κ+ 1
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Nesterov’s Accelerated Gradient

• If we only assume that ‖∇2f (x)‖ ≤ L and not strong convexity, then

in your homework you will prove that

f (βt)− f (β∗) ≤ cL
‖β0 − β∗‖2

t

• Note that this is much weaker than the linear convergence we saw

before.

• Question is can we do better?
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Nesterov’s Accelerated Gradient

Figure 2: Y. Nesterov

• Keep track of two vectors xt and yt

• xt+1 = yt − αt∇f (yt)

• yt+1 = xt+1 +
t

t + 3︸ ︷︷ ︸
µt+1

(xt+1 − xt)
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Nesterov’s Accelerated Gradient

• Can be re-written as:

xt+1 = xt + µ(xt − xt−1)− αt∇f (xt + µt(xt − xt−1))

• Very much like the momentum method, but computes the derivative

at a future step. 11



Nesterov’s Accelerated Gradient

• Not a descent method.

• If f is convex and L smooth and the learning rate is 1/L, this obtains

the optimal O(1/t2) error after t steps.

• Proof is complicated, but can be simplified using intuitions from

differential equations.
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Subgradient methods

• So far we have assumed differentiable f .

• What if f is not differentiable?

• Instead of a gradient we will define a subgradient.
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Subgradient methods

• We will say that g is a subgradient of f at point x if

f (z) ≥ f (x) + gT (z − x), ∀z

• Set of all gradients is called the sub-differential of f at point x and is

denoted by ∂f (x)
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Example

f (x) = max(g(x), h(x)) δf (x) =


{g ′(x)} If g(x) > h(x)

∈ [g ′(x), h′(x)] If g(x) = h(x)

{h′(x)} If g(x) < h(x)
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Example

f (x) = |x | δf (x) =


{−1} If x < 0

[−1, 1] If x = 0

{1} If x > 0
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Subgradients

Behaves very much like a gradient;

• ∂(αf ) = α∂f for α ≥ 0

• ∂(f + g) = ∂f + ∂g

• For convex f , if g(x) = f (Ax + b), ∂g(x) = AT ∂f (Ax + b)
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`1 norm
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Lets talk about Lasso

β̂ββLASSO = min
βββ

(yyy − xxxβββ)>(yyy − xxxβββ) + λ

p∑
j=1

|βj | (1)
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Alternative formulation

β̂ββridge = min
βββ

(yyy − xxxβββ)>(yyy − xxxβββ) Subject to βββ>βββ ≤ τ2 (2)

β̂ββlasso = min
βββ

(yyy − xxxβββ)>(yyy − xxxβββ) Subject to ‖βββ‖1 ≤ τ (3)
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Uniqueness - OLS

(Thanks to Piaoping Jiang for asking this in class)

• So what happens to linear regression when p > n or rank(X ) < p?

• There are many solutions,

• You can just add a vector lying in the null space of X to a solution

to get another

• In particular, you can always find a variable which has +ve sign on

solution and -ve sign on another.

• This makes interpreting a solution rather difficult.
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Uniqueness - Lasso

• So the question is, what happens in Lasso, when X is rank deficient.

• For a fixed λ, can one lasso solution have a positive i th coefficient,

and another have a negative i th coefficient?

• Must any two lasso solutions, at the same value of λ, necessarily

share the same support, and differ only in their estimates of the

nonzero coefficient values? Or can different lasso solutions exhibit

different active sets?
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Uniqueness - Lasso

• Q0. When does Lasso have non-unique solutions?

• If the elements of X are drawn from a continuous probability

distribution, then the lasso returns a unique solution with probability

one over the distribution of X, regardless of the sizes of n and p.

• So, the only time you have to worry about non-uniqueness, is when

X is discrete.
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Uniqueness - Lasso

• Q1. For a fixed λ, can one lasso solution have a positive ith

coefficient, and another have a negative ith coefficient?

• The short answer is no, and you can prove this. So, unlike OLS,

lasso solutions do not suffer from sign inconsistencies.

• Q2. Can there be different supports for the same λ?

• Unfortunately yes. But you can compute upper and lower bounds for

the lasso coefficients, and deal with this.
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Optimality condition

• For differentiable f

f (x∗) = min
x

f (x)↔ ∇f (x∗) = 0

• For convex f that may not be differentiable,

f (x∗) = min
x

f (x)↔ 0 ∈ δf ′(x∗)

• Just plug into the definition of a subgradient!

f (y) ≥ f (x∗) + 0T (y − x∗) = f (x∗)
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Soft thresholding

• Consider the easier problem

x = arg min
1

2
‖y − x‖2 + λ‖x‖1

• Show that the soft thresholding operator x∗ = Sλ(y) is the solution

to this.

Sλ(y) =


yi − λ if yi > λ

0 if yi ∈ [−λ, λ]

yi + λ if yi < −λ
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Sub-gradient method

• βk+1 = βk − αkgk
• Here gk is any subgradient at the βk

• Note that subgradient direction is not always a direction of descent

• So we do

f (βbestk ) = min
i=1,...,k

f (βi )

• We can choose it as

• Fixed, i.e. αk = α

• Or diminishing such that
∑
k

α2
k <∞,

∑
k

αk =∞
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Convergence

• Assume that f is convex, and Lipschitz continuous with some

constant G > 0

|f (x)− f (y)| ≤ G‖x − y‖2 for all x , y

Theorem
For a fixed step size α,

lim
k→∞

f (x
(k)
best) ≤ f ∗ + G2α/2

Theorem
For diminishing step size αk with

∑
k

αk →∞ and
∑
k

α2k <∞,

lim
k→∞

f (x
(k)
best) = f ∗
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Regularized logistic regression

• Let {xi , yi}
n
i=1 with xi ∈ <

p and yi ∈ {0, 1}

• The logistic regression loss is:

f (β) =
∑
i

(
−yi x

T
i β + log(1 + exp(xTi β))

)

• With lasso regularization we have:

β̂ = arg min f (β) + λ‖β‖1

• So, use

∆β = −
∑
i

(yi − pi (β))xi︸ ︷︷ ︸
gradient

+ ∂‖β‖1︸ ︷︷ ︸
subgradient
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Convergence

Figure 3: f − f ∗ on X axis, iterations on Y axis. Logistic regression in two

dimensions, λ = 1
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Convergence

• Gradient descent takes 1/ε time to converge, whereas subgradient

descent with variable step-size takes 1/ε2 time to converge.

Theorem
For any k ≤ n − 1 and starting point β(0), there is a function such that

any non-smooth first order method satisfies:

f (β(k))− f ∗ ≥ G‖β(0) − β∗‖
2(1 +

√
k + 1)

• So it seems like we cant really improve on sub-gradient methods.
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