

SDS 385: Stat Models for Big Data Lecture 5: Proximal methods

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Proximal methods

• You want to minimize functions of the form

 $f(x) = \underbrace{g(x)}_{convex, differentiable} + \underbrace{h(x)}_{convex, nonsmooth}$

• If h was differentiable, we would use

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

• Here we would use:

$$x_{k+1} = \arg\min_{z} \frac{1}{2\alpha} \underbrace{\|z - (x_t - \alpha \nabla g(x_t))\|^2}_{\text{Stay close to the gradient direction}} + \underbrace{h(z)}_{\text{minimize h}}$$

• Define:

$$\operatorname{prox}_{\alpha}(x) = \arg\min_{z} \frac{1}{2\alpha} \|x - z\|^{2} + h(z)$$

- Proximal GD:
 - Choose initial $x^{(0)}$
 - Repeat, for *k* = 1, 2, 3

$$x_{k+1} = \operatorname{prox}_{\alpha_k}(x_k - \alpha_k \nabla g(x_k))$$

• But, we just turned one minimization into another. And both has *h* which is the troublesome part.

$$f(\beta) = \frac{1}{2} ||y - X\beta||^2 + \lambda ||\beta||_1$$

• The proximal map is:

$$prox_{\alpha}(\beta) = \arg\min_{z} \left(\frac{1}{2\alpha} \|\beta - z\|^{2} + \lambda \|z\|_{1} \right)$$
$$= S_{\lambda\alpha}(\beta)$$
$$[prox_{\alpha}(\beta)]_{i} = \begin{cases} \beta_{i} - \lambda \alpha & \text{If } \beta_{i} > \lambda \alpha \\ 0 & \text{If } |\beta_{i}| \le \lambda \alpha \\ \beta_{i} + \lambda \alpha & \text{If } \beta_{i} < -\lambda \alpha \end{cases}$$

• In this case, the gradient is

$$\nabla g(\beta) = -X^{T}(y - X\beta)$$

• So the update step for Lasso becomes:

$$\beta_{k+1} = S_{\lambda\alpha} \left(\beta_k + \alpha X^T (y - X\beta) \right)$$

• This is the Iterative Soft Thresholding Algorithm (ISTA), due to Beck and Teboule, 2008. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems"

Convergence

- Recall our setup. We are minimizing $g(\beta) + h(\beta)$, where
 - g is convex and differentiable (what you had assumed for gradient and stochastic gradient descent methods)
 - ∇g is *L*-Lipschitz
 - h(x) is convex.
 - Now if you can compute the proximal operator, then:

Theorem

As long as $\alpha \leq 1/L$,

$$f(\beta^{(k)}) - f(\beta^*) \le \frac{\|\beta^{(0)} - \beta^*\|_2^2}{2k\alpha}$$

• You can also add Nesterov's accelerated gradient to this.

FISTA-Fast Iterative Shrinkage-Thresholding Algorithm

- Start with $\beta^{(0)}$
- Compute $v = \beta^{(k-1)} + \frac{k-2}{k+1} (\beta^{(k-1)} \beta^{(k-2)})$
- Compute $\beta^{(k)} = \operatorname{prox}_{\alpha_k}(v \alpha_k \nabla g(v))$
- Handwavy explanation
 - The (k-2)/(k+1) is important.
 - Note this is 1/4 in the beginning, but then increases to $1 \label{eq:linear}$
 - As we keep getting closer to the optima, the gradient becomes smaller (its zero at the optima)
 - The acceleration basically pushes more and more in this direction if you are close to the optima (more so as k → ∞, where momentum becomes 1.)
- Converges much faster.

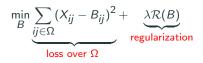
- Given the "observed" entries, we want to infer the unobserved entries.
- Helps in recommending new books/movies/music to users.
- Typically, we pose this as an optimization problem, with suitable constraints on the learned matrix.

Example: Recommender systems

	IRR. TOLKIEN LORD RINCS	Hotton Hotton Hotton Hotton Hotton Hotton	GEORGE R.R. MARTIN A DANCE DRAGONS		WHERE THE HILD TRANSD REE	AYAYA PLAYH THE BEUS JAR
Alice	5		5			1
Alice Bob		3		5	4	
Reba	4		4	5		4

- Here, each row represents a user or customer.
- Each column represents a product
 - This can be a movie for Netflix
 - This can be a book for Amazon or Goodreads
 - This can be a product on Amazon
- The $(i,j)^{th}$ entry represents the rating provided by user *i* for product *j*
- Not all elements are observed, since not every customer has rated every product

- We will provide optimization objectives which deals directly with observed and unobserved entries.
- Notation Let Ω denote the set of pairs (i, j) such that X_{ij} is observed.



- So what kind of regularization can we use?
- How about a rank constraint?

- So what kind of regularization can we use?
- How about a rank constraint?

$$\min_{B} \sum_{ij \in \Omega} (X_{ij} - B_{ij})^2$$

s.t.rank(B) = k

• Rank constraints in the above setting can be combinatorially very hard.

- Rank constraints in the above setting can be combinatorially very hard.
- Funny right? because some rank minimization problems are easy if I ask you to return the best rank *k* approximation of a matrix. But the moment you add more structure, i.e. minimize frobenius norm over a set of pairs, things get hairy.

There are several special cases of the RMP that have well known solutions. For example, approximating a given matrix with a low-rank matrix in spectral or Frobenius norm is an RMP that can be solved via singular value decomposition (SVD) [15]. However, in general, the RMP is known to be computationally intractable (NP-hard) [26]..

Rank Minimization and Applications in System Theory.Fazel, Hindi and Boyd, 2004

• Instead, what is often used is the nuclear norm penalty.

$$\min_{B \in \mathbb{R}^{m \times n}} \sum_{ij \in \Omega} (X_{ij} - B_{ij})^2 + \lambda \|B\|_*$$

- Recall that the nuclear norm is basically the sum of the singular values of a matrix.
- The rank can be thought of as a ℓ_0 "norm" of the vector of singular values, constraints based on which are not convex
- The nuclear norm is like a ℓ_1 norm.

• Instead, what is often used is the nuclear norm penalty.

$$\min_{B \in \mathbb{R}^{m \times n}} \sum_{ij \in \Omega} (X_{ij} - B_{ij})^2 + \lambda \|B\|_*$$

- Recall that the nuclear norm is basically the sum of the singular values of a matrix.
- The rank can be thought of as a ℓ_0 "norm" of the vector of singular values, constraints based on which are not convex
- The nuclear norm is like a ℓ_1 norm.
- As it turns out the nuclear norm is the tightest convex relaxation of of rank of a matrix. (See Fazel, Hindi and Boyd)

• Instead, what is often used is the nuclear norm penalty.

$$\min_{B \in \mathbb{R}^{m \times n}} \sum_{ij \in \Omega} (X_{ij} - B_{ij})^2 + \lambda \|B\|_*$$

- Recall that the nuclear norm is basically the sum of the singular values of a matrix.
- The rank can be thought of as a ℓ_0 "norm" of the vector of singular values, constraints based on which are not convex
- The nuclear norm is like a ℓ_1 norm.
- As it turns out the nuclear norm is the tightest convex relaxation of of rank of a matrix. (See Fazel, Hindi and Boyd)
 - In plain words, over a bounded set, the nuclear norm function is the largest convex function smaller than the rank function, otherwise also known as the convex envelop.

Example: matrix completion

Given a matrix $X \in \mathbb{R}^{m \times n}$ and observed entries $(i, j) \in \Omega$, you want to fill missing entries by solving:

$$\min_{B\in\mathbb{R}^{m\times n}}\frac{1}{2}\sum_{ij\in\Omega}(X_{ij}-B_{ij})^2+\lambda\|B\|_*$$

• $||B||_*$ is the nuclear norm of *B*, defined as:

$$\|B\|_* = \sum_{i=1}^k \sigma_i(B)$$

where k is the rank of B and $\sigma_1(B) \ge \sigma_2(B)...$ are the singular values.

• Nuclear norm is a convex approximation of rank, think how you cannot easily minimize ℓ_0 norm, aka the number of nonzero entries, an instead minimize the ℓ_1 norm to induce sparsity in regression problems.

- $[P_{\Omega}(B)]_{ij} = B_{ij}1((ij) \in \Omega)$
- So the optimization can also be written as:

$$\min \frac{1}{2} \| P_{\Omega}(X) - P_{\Omega}(B) \|_F^2 + \lambda \| B \|_*$$

- Gradient of smooth first part: $-(P_{\Omega}(X) P_{\Omega}(B))$
- Prox function:

$$\operatorname{prox}_{\alpha}(B) = \arg \min_{Z \in \mathbb{R}^{m \times n}} \frac{1}{2\alpha} \|B - Z\|_{F}^{2} + \lambda \|Z\|_{*}$$

- It can be shown that $\text{prox}_{\alpha}(B) = S_{\alpha}(B)$, where
- $S_{\alpha}(B)$ is $U\Sigma_{\alpha}V^{T}$, where $B = U\Sigma V^{T}$ and

$$\Sigma_{\alpha}(i,i) = \max(\Sigma_{ii} - \alpha, 0)$$

- $B_{k+1} = S_{\lambda\alpha}(B + \alpha(P_{\Omega}(Y) P_{\Omega}(B)))$
- This is called the Soft Impute algorithm.
 - Cai et al, "A Singular Value Thresholding Algorithm for Matrix Completion", 2010.
 - Mazumdar et al 2011, "Spectral regularization algorithms for learning large incomplete matrices"

• Set
$$Z^{(0)} = 0$$

• Set
$$B_{ij}^{(t+1)} = \begin{cases} Y_{ij} & (i,j) \in \Omega \\ Z_{ij}^{(t)} & (i,j) \notin \Omega \end{cases}$$

- Compute $B^{(t)} = U \operatorname{diag}[\sigma_1, \dots, \sigma_r] V^T$
- Compute $Z^{(t+1)} = U \text{diag}[(\sigma_1 \lambda)_+, \dots, (\sigma_r \lambda)_+] V^T$

 We will load an image and convert its grayscale version into a matrix.

```
from keras.preprocessing.image import load_img
# load the image
img = load_img('bondi_beach.jpeg',grayscale=True)
# report details about the image
print(type(img))
print(img.format)
print(img.mode)
print(img.size)
# show the image
img.show()
```

```
<class 'PIL.Image.Image'>
None
L
(640, 427)
```

 We will load an image and convert its grayscale version into a matrix.

```
from keras.preprocessing.image import img_to_array
img_array = np.squeeze(img_to_array(img))
print(img_array.dtype)
print(img_array.shape)
```

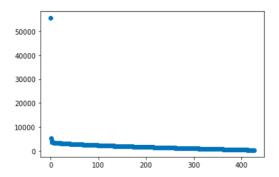
float32 (427, 640)

• Now we will sample 100,000 entries at random and withhold them.

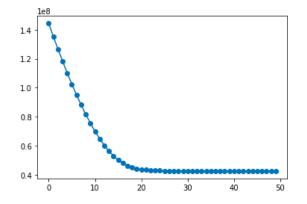
```
from keras.preprocessing.image import array_to_img
img2=copy.copy(img_array)
n=range(100000)
nrow=427
ncol=640
for i in n:
   row=random.choice(range(nrow))
   col=random.choice(range(ncol))
   row
   img2[row,col]=0;
plt.matshow(img2)
```

Applying the Soft Impute algorithm

- But what kind of a λ do we use?
- Here is a plot of the singular values of the matrix img2

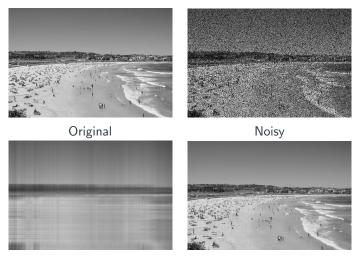


Applying the Soft Impute algorithm



 Good sanity check to see if the loss is going down with the number of iterations.

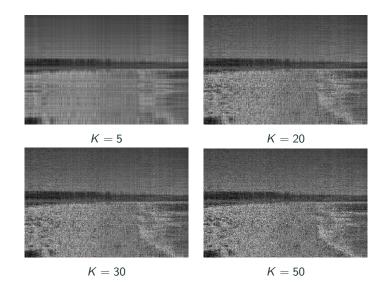
Applying the Soft Impute algorithm with $\lambda=2000$ and $\lambda=50$



 $\lambda = 2000$

 $\lambda = 50$

Applying SVD



24

- We will show that $\operatorname{prox}_{\alpha}(B) = S_{\alpha}(B)$, where
- $S_{\alpha}(B)$ is $U\Sigma_{\alpha}V^{T}$, where $B = U\Sigma V^{T}$ and

$$\Sigma_{\alpha}(i,i) = \max(\Sigma_{ii} - \alpha, 0)$$

- First, it is known that the subdifferential of the nuclear norm is given by: $\partial \|Z\|_* = \{UV^T + W : \|W\| \le 1, U^T W = 0, WV = 0\}$, where $U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}$ where $Z = U\Sigma V^T$ where Σ contains the nonzero singular values of Z.
- Now we will show that $0 \in S_{\alpha\lambda}(B) B + \lambda \alpha \partial \|S_{\alpha\lambda}(B)\|_*$

- Take U₀, V₀ as the singular vectors corresponding to σ_i(B) > λα =: t.
- Take the remaining singular vectors as U_{\perp}, V_{\perp} and the corresponding singular value matrix as Σ_{\perp}

•
$$S_t(B) - B = -tU_0V_0^T - U_\perp \Sigma_\perp V_\perp^T$$

•
$$S_t(B) - B + t(U_0V_0^T + W) = tW - U_\perp \Sigma_\perp V_\perp^T$$

- Taking $W = U_{\perp} \Sigma_{\perp} V_{\perp}^{T} / t$, we see that
 - $U^T W = 0$
 - *WV* = 0
 - $\|W\| \leq 1$

Cai et al, "A Singular Value Thresholding Algorithm for Matrix Completion", 2010.