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Proximal methods

• You want to minimize functions of the form

f (x) = g(x)︸︷︷︸
convex ,differentiable

+ h(x)︸︷︷︸
convex ,nonsmooth

• If h was differentiable, we would use

xk+1 = xk − α∇f (xk )

• Here we would use:

xk+1 = arg min
z

1

2α
‖z − (xt − α∇g(xt ))‖2︸ ︷︷ ︸

Stay close to the gradient direction

+ h(z)︸︷︷︸
minimize h
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Proximal mapping

• Define:

proxα(x) = arg min
z

1

2α
‖x − z‖2 + h(z)

• Proximal GD:

• Choose initial x (0)

• Repeat, for k = 1, 2, 3

xk+1 = proxαk
(xk − αk∇g(xk ))

• But, we just turned one minimization into another. And both has h

which is the troublesome part.
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Example: Lasso

f (β) =
1

2
‖y − Xβ‖2 + λ‖β‖1

• The proximal map is:

proxα(β) = arg min
z

(
1

2α
‖β − z‖2 + λ‖z‖1

)
= Sλα(β)

[proxα(β)]i =


βi − λα If βi > λα

0 If |βi | ≤ λα

βi + λα If βi < −λα
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Lasso

• In this case, the gradient is

∇g(β) = −XT (y − Xβ)

• So the update step for Lasso becomes:

βk+1 = Sλα

(
βk + αXT (y − Xβ)

)
• This is the Iterative Soft Thresholding Algorithm (ISTA), due to

Beck and Teboule, 2008. “A fast iterative shrinkage-thresholding

algorithm for linear inverse problems”
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Convergence

• Recall our setup. We are minimizing g(β) + h(β), where

• g is convex and differentiable (what you had assumed for gradient

and stochastic gradient descent methods)

• ∇g is L−Lipschitz

• h(x) is convex.

• Now if you can compute the proximal operator, then:

Theorem
As long as α ≤ 1/L,

f (β(k))− f (β∗) ≤ ‖β
(0) − β∗‖2

2

2kα

• You can also add Nesterov’s accelerated gradient to this.
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FISTA-Fast Iterative Shrinkage-Thresholding Algorithm

• Start with β(0)

• Compute v = β(k−1) +
k − 2

k + 1
(β(k−1) − β(k−2))

• Compute β(k) = proxαk
(v − αk∇g(v))

• Handwavy explanation

• The (k − 2)/(k + 1) is important.

• Note this is 1/4 in the beginning, but then increases to 1

• As we keep getting closer to the optima, the gradient becomes

smaller (its zero at the optima)

• The acceleration basically pushes more and more in this direction if

you are close to the optima (more so as k →∞, where momentum

becomes 1.)

• Converges much faster.
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Matrix completion

• Given the “observed” entries, we want to infer the unobserved

entries.

• Helps in recommending new books/movies/music to users.

• Typically, we pose this as an optimization problem, with suitable

constraints on the learned matrix.
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Example: Recommender systems

• Here, each row represents a user or customer.

• Each column represents a product

• This can be a movie for Netflix

• This can be a book for Amazon or Goodreads

• This can be a product on Amazon

• The (i , j)th entry represents the rating provided by user i for product

j

• Not all elements are observed, since not every customer has rated

every product
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Matrix completion - formulation

• We will provide optimization objectives which deals directly with

observed and unobserved entries.

• Notation – Let Ω denote the set of pairs (i , j) such that Xij is

observed.

min
B

∑
ij∈Ω

(Xij − Bij )2

︸ ︷︷ ︸
loss over Ω

+ λR(B)︸ ︷︷ ︸
regularization
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Matrix completion - formulation

min
B∈Rm×n

∑
ij∈Ω

(Xij − Bij )2

︸ ︷︷ ︸
loss over Ω

+ λR(B)︸ ︷︷ ︸
regularization that involves all entries

• So what kind of regularization can we use?

• How about a rank constraint?

min
B

∑
ij∈Ω

(Xij − Bij )2

s.t.rank(B) = k
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Matrix completion - formulation

• Rank constraints in the above setting can be combinatorially very

hard.

• Funny right? because some rank minimization problems are easy – if

I ask you to return the best rank k approximation of a matrix. But

the moment you add more structure, i.e. minimize frobenius norm

over a set of pairs, things get hairy.

Rank Minimization and Applications in System Theory.Fazel, Hindi and Boyd,

2004
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Matrix completion - formulation

• Instead, what is often used is the nuclear norm penalty.

min
B∈Rm×n

∑
ij∈Ω

(Xij − Bij )2 + λ‖B‖∗

• Recall that the nuclear norm is basically the sum of the singular

values of a matrix.

• The rank can be thought of as a `0 “norm” of the vector of singular

values, constraints based on which are not convex

• The nuclear norm is like a `1 norm.

• As it turns out the nuclear norm is the tightest convex relaxation of

of rank of a matrix. (See Fazel, Hindi and Boyd)

• In plain words, over a bounded set, the nuclear norm function is the

largest convex function smaller than the rank function, otherwise

also known as the convex envelop.
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Example: matrix completion

Given a matrix X ∈ Rm×n and observed entries (i , j) ∈ Ω, you want to fill

missing entries by solving:

min
B∈Rm×n

1

2

∑
ij∈Ω

(Xij − Bij )2 + λ‖B‖∗

• ‖B‖∗ is the nuclear norm of B, defined as:

‖B‖∗ =
k∑

i=1

σi (B),

where k is the rank of B and σ1(B) ≥ σ2(B) . . . are the singular

values.

• Nuclear norm is a convex approximation of rank, think how you

cannot easily minimize `0 norm, aka the number of nonzero entries,

an instead minimize the `1 norm to induce sparsity in regression

problems.
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Proximal gradient

• [PΩ(B)]ij = Bij 1((ij) ∈ Ω)

• So the optimization can also be written as:

min
1

2
‖PΩ(X )− PΩ(B)‖2F + λ‖B‖∗

• Gradient of smooth first part: −(PΩ(X )− PΩ(B))

• Prox function:

proxα(B) = arg min
Z∈Rm×n

1

2α
‖B − Z‖2F + λ‖Z‖∗
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Proximal GD

• It can be shown that proxα(B) = Sα(B), where

• Sα(B) is UΣαV
T , where B = UΣVT and

Σα(i , i) = max(Σii − α, 0)

15



Proximal GD

• Bk+1 = Sλα(B + α(PΩ(Y )− PΩ(B))

• This is called the Soft Impute algorithm.

• Cai et al, ”A Singular Value Thresholding Algorithm for Matrix

Completion”, 2010.

• Mazumdar et al 2011, “Spectral regularization algorithms for

learning large incomplete matrices”
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Algorithm

• Set Z (0) = 0

• Set B
(t+1)
ij =

Yij (i , j) ∈ Ω

Z
(t)
ij (i , j) 6∈ Ω

• Compute B(t) = Udiag[σ1, . . . , σr ]VT

• Compute Z (t+1) = Udiag[(σ1 − λ)+, . . . , (σr − λ)+]VT
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Lets do a real example

• We will load an image and convert its grayscale version into a

matrix.

18



Lets do a real example

• We will load an image and convert its grayscale version into a

matrix.
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Lets do a real example

• Now we will sample 100,000 entries at random and withhold them.

20



Applying the Soft Impute algorithm

• But what kind of a λ do we use?

• Here is a plot of the singular values of the matrix img2
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Applying the Soft Impute algorithm

• Good sanity check to see if the loss is going down with the number

of iterations.
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Applying the Soft Impute algorithm with λ = 2000 and λ = 50

Original Noisy

λ = 2000 λ = 50
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Applying SVD

K = 5 K = 20

K = 30 K = 50
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Proximal GD

• We will show that proxα(B) = Sα(B), where

• Sα(B) is UΣαV
T , where B = UΣVT and

Σα(i , i) = max(Σii − α, 0)

• First, it is known that the subdifferential of the nuclear norm is

given by: ∂‖Z‖∗ = {UVT + W : ‖W ‖ ≤ 1,UTW = 0,WV = 0},
where U ∈ Rm×r ,V ∈ Rn×r where Z = UΣVT where Σ contains the

nonzero singular values of Z .

• Now we will show that 0 ∈ Sαλ(B)− B + λα∂‖Sαλ(B)‖∗
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Proximal GD

• Take U0,V0 as the singular vectors corresponding to σi (B) > λα =: t.

• Take the remaining singular vectors as U⊥,V⊥ and the

corresponding singular value matrix as Σ⊥

• St (B)− B = −tU0V
T
0 − U⊥Σ⊥V

T
⊥

• St (B)− B + t(U0V
T
0 + W ) = tW − U⊥Σ⊥V

T
⊥

• Taking W = U⊥Σ⊥V
T
⊥ /t, we see that

• UTW = 0

• WV = 0

• ‖W ‖ ≤ 1
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