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Proximal methods

e You want to minimize functions of the form

f(x) = g(x) + h(x)
~—~—~ N~~~
convex,differentiable  convex,nonsmooth

e |If h was differentiable, we would use
Xjp1 = Xk — aVf(x)
e Here we would use:

1 2
Xerr = argmin otz (x — aVa(x)]| + o h2)

Stay close to the gradient direction minimize h



Proximal mapping

o Define: )
. 2
prox,,(x) = arg min EHX —z||* + h(z)

e Proximal GD:

e Choose initial x©
e Repeat, for k =1,2,3

Xk+1 = prox,, (X — ' Vg(x))

e But, we just turned one minimization into another. And both has h
which is the troublesome part.



Example: Lasso

7(8) = 2y — X812 + Mgy

e The proximal map is:

- . 1 2
proxa(5) = argmin (5113 - 212 + Azl )

B; — X If B; > A
[prox, (B)]; = 4 0 If 18j] < Aex

Bi +Aa If B < =X



Lasso

e In this case, the gradient is
Ve(B) = -XT(y - X)
e So the update step for Lasso becomes:
Bk+1 = Sxa (Bk +axXT(y - Xﬁ))

e This is the lterative Soft Thresholding Algorithm (ISTA), due to
Beck and Teboule, 2008. “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”



Convergence

e Recall our setup. We are minimizing g(3) + h(j3), where
e g is convex and differentiable (what you had assumed for gradient
and stochastic gradient descent methods)
e Vg is L—Lipschitz
e h(x) is convex.
e Now if you can compute the proximal operator, then:

Theorem
As long as o < 1/L,

Wy _ rgmy < 18° =871
FB) = £(57) < 51,

e You can also add Nesterov's accelerated gradient to this.



FISTA-Fast lterative Shrinkage-Thresholding Algorithm

Start with 5(©)
Compute v = gk=1) | u(g(k—l) _ plk=2)y

k+1

Compute 6(k) = proxak(v — oy Vg(v))

Handwavy explanation

The (k —2)/(k + 1) is important.

Note this is 1/4 in the beginning, but then increases to 1

As we keep getting closer to the optima, the gradient becomes
smaller (its zero at the optima)

The acceleration basically pushes more and more in this direction if
you are close to the optima (more so as k — oo, where momentum
becomes 1.)

e Converges much faster.



Matrix completion

e Given the “observed” entries, we want to infer the unobserved
entries.

e Helps in recommending new books/movies/music to users.

e Typically, we pose this as an optimization problem, with suitable
constraints on the learned matrix.



Example: Recommender systems

F—
GEORGER |
! N
; A DRRCE
peses DRAGONS
Alice 5 - 5 - - 1
Bob - 3 - 5 4
Reba a4 a4 5 4

(] Here, each row represents a user or customer.

Each column represents a product
e This can be a movie for Netflix
e This can be a book for Amazon or Goodreads
e This can be a product on Amazon

The (i7j)th entry represents the rating provided by user i for product
J
Not all elements are observed, since not every customer has rated

every product



Matrix completion - formulation

e We will provide optimization objectives which deals directly with
observed and unobserved entries.

e Notation — Let Q denote the set of pairs (i,j) such that Xj; is
observed.

. 2
min > (X —Bj)*+ AR(B)

regularization

loss over Q



Matrix completion - formulation

min_ S (X; - By)?+ AR(B)
BeRMXn iieQ ——
y regularization that involves all entries

loss over Q

e So what kind of regularization can we use?

e How about a rank constraint?
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Matrix completion - formulation

min_ S (X; - By)?+ AR(B)
BeRMXn iieQ ——
y regularization that involves all entries

loss over Q

e So what kind of regularization can we use?

e How about a rank constraint?

. 2
min E (Xij — Bjj)
B £
jeQ

s.t.rank(B) = k
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Matrix completion - formulation

e Rank constraints in the above setting can be combinatorially very
hard.
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Matrix completion - formulation

e Rank constraints in the above setting can be combinatorially very
hard.

e Funny right? because some rank minimization problems are easy — if
| ask you to return the best rank k approximation of a matrix. But
the moment you add more structure, i.e. minimize frobenius norm

over a set of pairs, things get hairy.

There are several special cases of the RMP that have
well known solutions. For example, approximating a given
matrix with a low-rank matrix in spectral or Frobenius
norm is an RMP that can be solved via singular value
decomposition (SVD) [15]. However, in general, the RMP
is known to be computationally intractable (NP-hard) [26]..

Rank Minimization and Applications in System Theory.Fazel, Hindi and Boyd,
2004
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Matrix completion - formulation

e Instead, what is often used is the nuclear norm penalty.

. 2
min > (Xj; — B;)" + A Bl|«

BeRrmxn iicQ

e Recall that the nuclear norm is basically the sum of the singular

values of a matrix.

e The rank can be thought of as a 5 “norm” of the vector of singular
values, constraints based on which are not convex

e The nuclear norm is like a ¢ norm.
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Matrix completion - formulation

e Instead, what is often used is the nuclear norm penalty.

. 2
min > (Xj; — B;)" + A Bl|«

X
BeRmMXn iien

e Recall that the nuclear norm is basically the sum of the singular
values of a matrix.

e The rank can be thought of as a 5 “norm” of the vector of singular
values, constraints based on which are not convex

e The nuclear norm is like a ¢ norm.

e As it turns out the nuclear norm is the tightest convex relaxation of
of rank of a matrix. (See Fazel, Hindi and Boyd)
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Matrix completion - formulation

e Instead, what is often used is the nuclear norm penalty.

. 2
min > (Xj; — B;)" + A Bl|«

X
BeRmMXn iien

e Recall that the nuclear norm is basically the sum of the singular
values of a matrix.

e The rank can be thought of as a 5 “norm” of the vector of singular
values, constraints based on which are not convex

e The nuclear norm is like a ¢ norm.

e As it turns out the nuclear norm is the tightest convex relaxation of
of rank of a matrix. (See Fazel, Hindi and Boyd)
e In plain words, over a bounded set, the nuclear norm function is the
largest convex function smaller than the rank function, otherwise

also known as the convex envelop.
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Example: matrix completion

mxn
R

Given a matrix X € and observed entries (i,;) € Q, you want to fill

missing entries by solving:

i A|B
Beg;gmxngi 5= B) + Bl

e ||B]|x is the nuclear norm of B, defined as:

k

IBll« = 0i(B),

i=1

where k is the rank of B and o1(B) > 05(B)... are the singular
values.

e Nuclear norm is a convex approximation of rank, think how you
cannot easily minimize ¢y norm, aka the number of nonzero entries,
an instead minimize the ¢1 norm to induce sparsity in regression

problems.
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Proximal gradient

[Pa(B)]; = Bjj1((i) € Q)

So the optimization can also be written as:

1 2
min 7 [[Pq(X) — Pa(B)I[F + AllBl|«

Gradient of smooth first part: —(Pq(X) — Pq(B))

Prox function:

2
1B = Z|F + Al Z]]«

1
rox, (B) = i —
prox,(B) argZErﬂng” o
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Proximal GD

e |t can be shown that prox,,(B) = Sa(B), where
e Sa(B)is UsaVT, where B= UV and

Yo, ) = max(X;; — «,0)
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Proximal GD

® Bii1="5\(B+a(Po(Y)— Pq(B))

e This is called the Soft Impute algorithm.
e Cai et al, " A Singular Value Thresholding Algorithm for Matrix

Completion”, 2010.
e Mazumdar et al 2011, “Spectral regularization algorithms for

learning large incomplete matrices”
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Algorithm

Set 200 — 9

Set B(t+1) {Yi‘ (i,j) e Q

Z p¢a

Compute Bt = Udiag[oy, .. .,ar]VT
Compute Z(t41) Udiag[(o1 — N)4,...,(or — )\)+]VT
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Lets do a real example

e We will load an image and convert its grayscale version into a
matrix.

from keras.preprocessing.image import load img

# load the image

img = load img('bondi_beach. jpeg',grayscale=True)
# report details about the image

print(type (img))

print(img.format)

print(img.mode)

print(img.size)

# show the Iimage

img.show()

<glass 'PIL.Image.Image'>
None

L

(640, 427)
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Lets do a real example

e We will load an image and convert its grayscale version into a
matrix.

from keras.preprocessing.image import img to_array
img array = np.squeeze(img to_array(img))
print(img_array.dtype)

print(img array.shape)

float32
(427, 640)
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Lets do a real example

e Now we will sample 100,000 entries at random and withhold them.

from keras.preprocessing.image import array to img

img2=copy.copy(img_array)

n=range(100000)

nrow=427

ncol=640

for i in n:
row=random.choice(range(nrow))
col=random.choice(range({ncol))
row
img2[row,col]=0;

plt.matshow(img2)
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Applying the Soft Impute algorithm

e But what kind of a X\ do we use?

e Here is a plot of the singular values of the matrix img2

*
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Applying the Soft Impute algorithm

1ef

144

12

10+

0.8 A

0.6 q

0.4 1

e Good sanity check to see if the loss is going down with the number
of iterations.
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Applying the Soft Impute algorithm with )\ = 2000 and )\ =50
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Applying SVD
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Proximal GD

e We will show that prox,(B) = Sa(B), where
e Sa(B)is USqVT, where B= UV and

Ya(i, i) = max(X;; — «,0)

e First, it is known that the subdifferential of the nuclear norm is
given by: 9)|Z|« ={UVT + W |W||<1,UTW =0 WV =0},
where U € R™*" v ¢ R™" where Z = ULV where ¥ contains the
nonzero singular values of Z.

e Now we will show that 0 € S, (B) — B + Aad)| S, (B)]+
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Proximal GD

e Take Uy, Vg as the singular vectors corresponding to o;(B) > Aa =: t.

e Take the remaining singular vectors as U,V | and the
corresponding singular value matrix as ¥ |

o Si(B)—B=—tlpVy —U x V]
o S:(B)—B+t(UpgVy +W)=tW—-uU,x, V]
e Taking W = UJ_ZJ_VI/t, we see that

e U'W=0
e WV =0
o W] <1
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