
SDS 385: Stat Models for Big Data

Lecture 6: Support Vector Machines

Purnamrita Sarkar

Department of Statistics and Data Science

The University of Texas at Austin

https://psarkar.github.io/teaching



Support Vector Machines

• Given training data (xi , yi )
n
i=1 ∈ Rp × {−1, 1}, we want to minimize:

min
w

wTw

2
+ C

∑
i

max(0, 1− yiw
T xi )

Figure 1: Courtesy Cho-Jui Hsieh’s class

1



SGD for SVM

• Define:

f (w) =
1

n

∑
i

wTw

2
+ nC max(0, 1− yiw

T xi )︸ ︷︷ ︸
fi (w)


• For t = 1 . . .

• Pick j uniformly at random.

• Compute ∇fj(w)

• Update w = w − ηt∇fj(w)

2



SGD for SVM

• In this case, the hinge loss is not differentiable.

• A subgradient of the hinge loss max(0, 1− yiw
T xi )

−yi xi if 1− yiw
T xi > 0

0 if 1− yiw
T xi < 0

0 if 1− yiw
T xi = 0

3



SGD for SVM

• For t = 1 . . .

• Pick j uniformly at random.
• If yjw

T xj < 1

• wt+1 = wt(1− ηt) + ηtCnyixi

• Else update wt+1 = wt(1− ηt)
• If you store w as a scalar, vector pair (γ, v) such that w = γv , then

just updating γ leads to O(1) computation.

• This is in “Pegasos: primal estimated subgradient solver for SVM”,

ICML 2007, Shalev-Schwartz et al.

4



Support Vector Machines – Dual

• Given training data (xi , yi )
n
i=1 ∈ Rp × {−1, 1}, we want to minimize:

min
w

wTw

2
+ C

∑
i

max(0, 1− yiw
T xi )︸ ︷︷ ︸

ξi

where

ξi = max(0, 1− yiw
T xi )⇒ ξi ≥ 0, ξi ≥ 1− yiw

T xi

5



Dual

• Remember the primal problem?

min
w ,ξ

wTw

2
+ C

∑
i

ξi

s.t. yiw
T xi − 1 + ξi ≥ 0, ξi ≥ 0, i = 1, . . . , n

• Add lagrange multipliers:

min
w ,ξ

max
α≥0,β≥0

wTw

2
+ C

∑
i

ξi −
∑
i

αi (yiw
T xi − 1 + ξi )−

∑
i

βi ξi

• Under Slater’s condition, exchanging min and max does not change

the optimal solution.

6



Dual

• The dual is:

max
α≥0,β≥0

min
w ,ξ

wTw

2
+ C

∑
i

ξi −
∑
i

αi (yiw
T xi − 1 + ξi )−

∑
i

βi ξi

• Differentiate w.r.t w .

w∗ =
∑
i

α∗i yi xi

• Differentiate w.r.t ξi .

C = αi + βi

• Substituting

max
0≤α≤C

−1

2

∑
ij

αiαjyi yjx
T
i xj +

∑
i

αi

7



SVM: the dual problem

• The dual of SVM is given by:

min
α

1

2
αTQα−

∑
i

αi

s.t.αi ∈ [0,C ]

Where Qij = yi yjx
T
i xj .

• The primal solution can be written in terms of the dual solution as:

w∗ =
∑
i

yiα
∗
i xi

8



Stochastic Dual coordinate descent

• Consider the one variable problem:

f (α+ δei ) =
1

2
(α+ δei )

TQ(α+ δei )−
∑
i

αi − δ

=
1

2
αTQα+ δαTQei + δ2

Qii
2
−

∑
i

αi − δ

• Set the gradient to zero:

(Qα)i + Qii δ
∗ − 1 = 0→ δ∗ =

1− (Qα)i
Qii

• But we have the constraint 0 ≤ αi + δ ≤ C , so we have:

αi + δ∗ =


αi +

1− (Qα)i
Qii

If αi + δ ∈ [0,C ]

0 If αi + δ < 0

C If αi + δ > C

9



Stochastic Dual coordinate descent

• For t = 1 . . .

• Pick a coordinate i at random.

• Compute

δ∗ = arg min
0<αi+δ<C

f (α+ δei )

• Update αi = αi + δ∗

• Update w = w + δ∗yixi (time complexity O(nnz(xi ))

• After convergence this gives w∗ =
∑
i

α∗
i yixi

10



Fast computation

• Main computational bottleneck Qα

• Write Q = diag(y)X︸ ︷︷ ︸
R

XT diag(y)︸ ︷︷ ︸
RT

• Note that:

(Qα)i = Ri R
Tα︸ ︷︷ ︸
w

= yi x
T
i w

• If you maintain w through the steps, computational complexity

becomes O(nnz(xi ))

• After each αi ← αi + δ∗ei update, you have:

w ← w + δ∗Qei = w + δ∗Q(:, i)

11



SVM: the kernel trick

• How do we use an SVM here?

• What if we use more than one dimensions?

• Say z = (x , x2)

12



SVM: the kernel trick

• So using a different mapping to a higher dimensional space helped.

• So if I want to map my features to a quadratic space, I will have

coefficients: (1, x1, x2, . . . , x
2
1 , x

2
2 , . . . , x1x2, x1x3 . . . , )

• So a total of O(p2) terms. If it is a cubic, then O(p3) terms. Wow!

storage increases exponentially with the dimensionality.

13



SVM: the kernel trick

• So in a nutshell:

min
α

1

2
αTQα−

∑
k

αk

s.t. 0 ≤ α ≤ C

where

Qij = yi yjφ(xi )
Tφ(xj )

• Building Q needs n2m2 time, where m is the number of dimensions

of the projection.

• w =
∑

k:αk>0

αkykφ(xk ). This will take O(nm) time.

• Classification rule for datapoint x:

Predict sign(wTφ(x))

See next slide.

14



SVM: the kernel trick

• So in a nutshell:

min
α

1

2
αTQα−

∑
k

αk

s.t. 0 ≤ α ≤ C

where

Qij = yi yjφ(xi )
Tφ(xj )

• Building Q needs n2m2 time, where m is the number of dimensions

of the projection.

• w =
∑

k:αk>0

αkykφ(xk ). This will take O(nm) time.

• Classification rule for datapoint x:

Predict sign(wTφ(x))

See next slide.

14



SVM: the kernel trick

• So in a nutshell:

min
α

1

2
αTQα−

∑
k

αk

s.t. 0 ≤ α ≤ C

where

Qij = yi yjφ(xi )
Tφ(xj )

• Building Q needs n2m2 time, where m is the number of dimensions

of the projection.

• w =
∑

k:αk>0

αkykφ(xk ). This will take O(nm) time.

• Classification rule for datapoint x:

Predict sign(wTφ(x))

See next slide.

14



SVM: the kernel trick

• So in a nutshell:

min
α

1

2
αTQα−

∑
k

αk

s.t. 0 ≤ α ≤ C

where

Qij = yi yjφ(xi )
Tφ(xj )

• Building Q needs n2m2 time, where m is the number of dimensions

of the projection.

• w =
∑

k:αk>0

αkykφ(xk ). This will take O(nm) time.

• Classification rule for datapoint x:

Predict sign(wTφ(x))

See next slide.
14



SVM: the kernel trick

• But, how do you predict the class of a new example?

• You would need to compute wTφ(x), where φ(x) is the high

dimensional mapping.

• This is proportional to the length of φ(x)

• But remember the form of w?

• wTφ(x) =
∑
i

αiyiφ(xi )
Tφ(x) =

∑
i

αiyiK(xi , x)

15



SVM: the kernel trick

Figure 2: Courtesy: Andrew Moore’s lecture slides

• But this dot product is the same as (aT b + 1)2!

• Same for cubic maps. So instead of doing O(pk ) computation to

compute a dot product in degree k polynomial, you can compute it

in O(p) time!

• So plug in K(x , x ′) instead of φ(x)Tφ(x ′)

16



Acknowledgment

Cho-Jui Hsieh’s class notes at UC Davis. Andrew Moore’s notes on SVM.

17


