SDS 385: Stat Models for Big Data
 Lecture 6: Support Vector Machines

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Support Vector Machines

- Given training data $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathbb{R}^{p} \times\{-1,1\}$, we want to minimize:

$$
\min _{w} \frac{w^{T} w}{2}+C \sum_{i} \max \left(0,1-y_{i} w^{T} x_{i}\right)
$$

Figure 1: Courtesy Cho-Jui Hsieh's class

SGD for SVM

- Define:

$$
f(w)=\frac{1}{n} \sum_{i}(\underbrace{\frac{w^{T} w}{2}+n C \max \left(0,1-y_{i} w^{T} x_{i}\right)}_{f_{i}(w)})
$$

- For $t=1$...
- Pick j uniformly at random.
- Compute $\nabla f_{j}(w)$
- Update $w=w-\eta_{t} \nabla f_{j}(w)$

SGD for SVM

- In this case, the hinge loss is not differentiable.
- A subgradient of the hinge loss $\max \left(0,1-y_{i} w^{\top} x_{i}\right)$

$$
\begin{cases}-y_{i} x_{i} & \text { if } 1-y_{i} w^{T} x_{i}>0 \\ 0 & \text { if } 1-y_{i} w^{\top} x_{i}<0 \\ 0 & \text { if } 1-y_{i} w^{\top} x_{i}=0\end{cases}
$$

SGD for SVM

- For $t=1$...
- Pick j uniformly at random.
- If $y_{j} w^{\top} x_{j}<1$
- $w_{t+1}=w_{t}\left(1-\eta_{t}\right)+\eta_{t} C n y_{i} x_{i}$
- Else update $w_{t+1}=w_{t}\left(1-\eta_{t}\right)$
- If you store w as a scalar, vector pair (γ, v) such that $w=\gamma v$, then just updating γ leads to $O(1)$ computation.
- This is in "Pegasos: primal estimated subgradient solver for SVM", ICML 2007, Shalev-Schwartz et al.

Support Vector Machines - Dual

- Given training data $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathbb{R}^{p} \times\{-1,1\}$, we want to minimize:

$$
\min _{w} \frac{w^{T} w}{2}+C \sum_{i} \underbrace{\max \left(0,1-y_{i} w^{T} x_{i}\right)}_{\xi_{i}}
$$

where

$$
\xi_{i}=\max \left(0,1-y_{i} w^{T} x_{i}\right) \Rightarrow \xi_{i} \geq 0, \xi_{i} \geq 1-y_{i} w^{\top} x_{i}
$$

Dual

- Remember the primal problem?

$$
\begin{array}{ll}
\min _{w, \xi} & \frac{w^{T} w}{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & y_{i} w^{T} x_{i}-1+\xi_{i} \geq 0, \xi_{i} \geq 0, i=1, \ldots, n
\end{array}
$$

- Add lagrange multipliers:

$$
\min _{w, \xi} \max _{\alpha \geq 0, \beta \geq 0} \frac{w^{T} w}{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left(y_{i} w^{\top} x_{i}-1+\xi_{i}\right)-\sum_{i} \beta_{i} \xi_{i}
$$

- Under Slater's condition, exchanging min and max does not change the optimal solution.

Dual

- The dual is:

$$
\max _{\alpha \geq 0, \beta \geq 0} \min _{w, \xi} \frac{w^{\top} w}{2}+C \sum_{i} \xi_{i}-\sum_{i} \alpha_{i}\left(y_{i} w^{\top} x_{i}-1+\xi_{i}\right)-\sum_{i} \beta_{i} \xi_{i}
$$

- Differentiate w.r.t w.

$$
w^{*}=\sum_{i} \alpha_{i}^{*} y_{i} x_{i}
$$

- Differentiate w.r.t ξ_{i}.

$$
C=\alpha_{i}+\beta_{i}
$$

- Substituting

$$
\max _{0 \leq \alpha \leq C}-\frac{1}{2} \sum_{i j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}+\sum_{i} \alpha_{i}
$$

SVM: the dual problem

- The dual of SVM is given by:

$$
\begin{gathered}
\min _{\alpha} \frac{1}{2} \alpha^{T} Q \alpha-\sum_{i} \alpha_{i} \\
\text { s.t. } \alpha_{i} \in[0, C]
\end{gathered}
$$

Where $Q_{i j}=y_{i} y_{j} x_{i}^{T} x_{j}$.

- The primal solution can be written in terms of the dual solution as:

$$
w^{*}=\sum_{i} y_{i} \alpha_{i}^{*} x_{i}
$$

Stochastic Dual coordinate descent

- Consider the one variable problem:

$$
\begin{aligned}
f\left(\alpha+\delta e_{i}\right) & =\frac{1}{2}\left(\alpha+\delta e_{i}\right)^{T} Q\left(\alpha+\delta e_{i}\right)-\sum_{i} \alpha_{i}-\delta \\
& =\frac{1}{2} \alpha^{T} Q \alpha+\delta \alpha^{T} Q e_{i}+\delta^{2} \frac{Q_{i i}}{2}-\sum_{i} \alpha_{i}-\delta
\end{aligned}
$$

- Set the gradient to zero:

$$
(Q \alpha)_{i}+Q_{i i} \delta^{*}-1=0 \rightarrow \delta^{*}=\frac{1-(Q \alpha)_{i}}{Q_{i i}}
$$

- But we have the constraint $0 \leq \alpha_{i}+\delta \leq C$, so we have:

$$
\alpha_{i}+\delta^{*}= \begin{cases}\alpha_{i}+\frac{1-(Q \alpha)_{i}}{Q_{i i}} & \text { If } \alpha_{i}+\delta \in[0, C] \\ 0 & \text { If } \alpha_{i}+\delta<0 \\ C & \text { If } \alpha_{i}+\delta>C\end{cases}
$$

Stochastic Dual coordinate descent

- For $t=1$...
- Pick a coordinate i at random.
- Compute

$$
\delta^{*}=\arg \min _{0<\alpha_{i}+\delta<C} f\left(\alpha+\delta e_{i}\right)
$$

- Update $\alpha_{i}=\alpha_{i}+\delta^{*}$
- Update $w=w+\delta^{*} y_{i} x_{i}$ (time complexity $O\left(n n z\left(x_{i}\right)\right)$
- After convergence this gives $w^{*}=\sum_{i} \alpha_{i}^{*} y_{i} x_{i}$

Fast computation

- Main computational bottleneck $Q \alpha$
- Write $Q=\underbrace{\operatorname{diag}(y) X}_{R} \underbrace{x^{T} \operatorname{diag}(y)}_{R^{T}}$
- Note that:

$$
(Q \alpha)_{i}=R_{i} \underbrace{R^{T} \alpha}_{w}=y_{i} x_{i}^{T} w
$$

- If you maintain w through the steps, computational complexity becomes $O\left(n n z\left(x_{i}\right)\right)$
- After each $\alpha_{i} \leftarrow \alpha_{i}+\delta^{*} e_{i}$ update, you have:

$$
w \leftarrow w+\delta^{*} Q e_{i}=w+\delta^{*} Q(:, i)
$$

SVM: the kernel trick

- How do we use an SVM here?
- What if we use more than one dimensions?
- Say $z=\left(x, x^{2}\right)$

SVM: the kernel trick

- So using a different mapping to a higher dimensional space helped.
- So if I want to map my features to a quadratic space, I will have coefficients: $\left(1, x_{1}, x_{2}, \ldots, x_{1}^{2}, x_{2}^{2}, \ldots, x_{1} x_{2}, x_{1} x_{3} \ldots,\right)$
- So a total of $O\left(p^{2}\right)$ terms. If it is a cubic, then $O\left(p^{3}\right)$ terms. Wow! storage increases exponentially with the dimensionality.

SVM: the kernel trick

- So in a nutshell:

$$
\begin{aligned}
\min _{\alpha} & \frac{1}{2} \alpha^{T} Q \alpha-\sum_{k} \alpha_{k} \\
\text { s.t. } & 0 \leq \alpha \leq C
\end{aligned}
$$

where

$$
Q_{i j}=y_{i} y_{j} \phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

SVM: the kernel trick

- So in a nutshell:

$$
\begin{aligned}
\min _{\alpha} & \frac{1}{2} \alpha^{T} Q \alpha-\sum_{k} \alpha_{k} \\
\text { s.t. } & 0 \leq \alpha \leq C
\end{aligned}
$$

where

$$
Q_{i j}=y_{i} y_{j} \phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

- Building Q needs $n^{2} m^{2}$ time, where m is the number of dimensions of the projection.

SVM: the kernel trick

- So in a nutshell:

$$
\begin{aligned}
\min _{\alpha} & \frac{1}{2} \alpha^{T} Q \alpha-\sum_{k} \alpha_{k} \\
\text { s.t. } & 0 \leq \alpha \leq C
\end{aligned}
$$

where

$$
Q_{i j}=y_{i} y_{j} \phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

- Building Q needs $n^{2} m^{2}$ time, where m is the number of dimensions of the projection.
- $w=\sum_{k: \alpha_{k}>0} \alpha_{k} y_{k} \phi\left(x_{k}\right)$. This will take $O(n m)$ time.

SVM: the kernel trick

- So in a nutshell:

$$
\begin{aligned}
& \min _{\alpha} \frac{1}{2} \alpha^{T} Q \alpha-\sum_{k} \alpha_{k} \\
& \text { s.t. } \quad 0 \leq \alpha \leq C
\end{aligned}
$$

where

$$
Q_{i j}=y_{i} y_{j} \phi\left(x_{i}\right)^{T} \phi\left(x_{j}\right)
$$

- Building Q needs $n^{2} m^{2}$ time, where m is the number of dimensions of the projection.
- $w=\sum_{k: \alpha_{k}>0} \alpha_{k} y_{k} \phi\left(x_{k}\right)$. This will take $O(n m)$ time.
- Classification rule for datapoint x :

$$
\text { Predict } \operatorname{sign}\left(w^{T} \phi(x)\right)
$$

See next slide.

SVM: the kernel trick

- But, how do you predict the class of a new example?
- You would need to compute $w^{\top} \phi(x)$, where $\phi(x)$ is the high dimensional mapping.
- This is proportional to the length of $\phi(x)$
- But remember the form of w ?
- $w^{\top} \phi(x)=\sum_{i} \alpha_{i} y_{i} \phi\left(x_{i}\right)^{T} \phi(x)=\sum_{i} \alpha_{i} y_{i} K\left(x_{i}, x\right)$

SVM: the kernel trick

Figure 2: Courtesy: Andrew Moore's lecture slides

- But this dot product is the same as $\left(a^{T} b+1\right)^{2}$!
- Same for cubic maps. So instead of doing $O\left(p^{k}\right)$ computation to compute a dot product in degree k polynomial, you can compute it16

Acknowledgment

Cho-Jui Hsieh's class notes at UC Davis. Andrew Moore's notes on SVM.

