
SDS 385: Stat Models for Big Data

Lecture 7: Nearest neighbor methods

Purnamrita Sarkar

Department of Statistics and Data Science

The University of Texas at Austin

https://psarkar.github.io/teaching

Nearest neighbor queries

• Many applications need efficient nearest neighbor search

• It can be kernel regression

• Matching and retrieval

• Kernel density estimation

1

A concrete example: Min hash

• Lets start with a simple setting.

• You have documents which can be represented by sets of words, or

shingles, which are none other than moving window of words.

• If a document is ‘This is Stat models for Big data’, then 2-singles

are {‘This is’, ‘is Stat’, ‘Stat models’} etc.

• The goal is to remove duplicate documents.

• For 1M documents, doing all pairs of similarity would take about 5

days.

2

Jaccard similarity

• Consider two sets S1, S2

• A common similarity measure is the Jaccard index:

J(S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

• Consider the binary representation of two sets S1 = 10111 and

S2 = 10011

• |S1 ∩ S2| = 3

• |S1 ∪ S2| = 4

• Jaccard score 3/4

3

Hashing: main idea

• Goal: find a hash function h(.) such that

• If sim(C1,C2) is high, then w.h.p h(C1) = h(C2)

• If sim(C1,C2) is low, then w.h.p h(C1) 6= h(C2)

• Not all similarity functions allow such a hash function

• For the Jaccard score however, such a function does exist.

4

Min Hashing

• Write the document dataset as a binary matrix of shingles by

documents

• Consider a permutation π of the elements, or the words, or the

shingles or the rows

• hπ(C) is the index of the first (in the permuted order π) row in

which column C has value 1.

• In other words:

hπ(C) = min(π(C))

• Use many hash functions (i.e. via random permutations) to create a

signature of the columns

5

Example

6

Key claim

• P(hπ(C1) = hπ(C2)) = J(C1,C2)

• Consider a document X and let y ∈ X be an element of it.

P(π(y) = hπ(X)) = 1/|X |

• Since it is equally likely for any element to become the smallest

element under a random permutation

• For C1,C2 the probability that some element y ∈ C1 ∪ C2 is the

min-hash is 1/|C1 ∪ C2|
• The probability that the two min-hashes are the same is the same as

the probability that one of the elements in the intersection is the

min-hash, i.e. the probability becomes |C1 ∩ C2|/|C1 ∪ C2|

7

Key claim

• The hash function only returns 1 or 0 not a number in [0, 1]

• Thats why you need multiple hash functions and take the average

• For 100 random permutations, each document is now represented as

a vector in 100 dimensions, so we have compressed the original long

vectors intro short signatures while not losing the signal, which is

the similarity between documents in this case

8

Min hashing

• Permuting rows is prohibitive.

• You can use approximate linear permutation hashing.

• h(x ; a, b) = ((ax + b) mod p) mod n where a, b are random integers

and p is some prime number larger than n.

9

Min hashing

• Permuting rows is prohibitive.

• You can use approximate linear permutation hashing.

• h(x ; a, b) = ((ax + b) mod p) mod n where a, b are random integers

and p is some prime number larger than n.

10

Efficient Min hashing algorithm

• Construct n hash functions h1, . . . , hn Set S(i , c) =∞ for

i = 1 : n, c = 1 : C

• For each row, r ∈ {1 . . .N} of the characteristic matrix,

• For each document/column c,

• If column c has 0 in row r , do nothing

• Otherwise, for each i = 1 . . . n, let S(i , c)← min(S(i , c), hi (r))

11

Acknowledgment

Ullman’s lecture notes from “Mining of Massive Datasets”

12

