SDS 385: Stat Models for Big Data
 Lecture 8: Locality sensitive hashing

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Distance measure

We call $d(x, y)$ a distance metric between points x and y in some space, if,

- $d(x, y) \geq 0$
- $d(x, y)=0 \leftrightarrow x=y$
- Symmetry: $d(x, y)=d(y, x)$
- Triangle inequality: $d(x, y) \leq d(x, z)+d(z, y)$

Examples

- Euclidian distance $d(x, y)=\sqrt{\|x-y\|^{2}}$
- L_{r} norm, $d(x, y)=\left(\sum_{i}\left|x_{i}-y_{i}\right|^{r}\right)^{1 / r}$
- $r=1$: Manhattan distance
- $r \rightarrow \infty$: infinity norm
- $r=2$: Euclidean distance

Examples: Jaccard distance

- Let x, y be sets
- $d(x, y)=1-\operatorname{Jaccard}(x, y)$
- Can you prove that this is a distance metric?
- Non-negativity is satisfied trivially
- $d(x, y)=0$ implies $|x \cup y|=|x \cap y|$
- Symmetry is true trivially
- Triangle inequality?

Examples: Jaccard distance

- Remember $J(x, y)=P(h(x)=h(y))$ where h is the min-hash?
- $d(x, y)=P(h(x) \neq h(y))$
- $1(h(x) \neq h(y)) \leq 1(h(x) \neq h(z))+1(h(z) \neq h(y))$
- This is because if $h(x) \neq h(y)$, we cannot have $h(x)=h(y)=h(z)$
- So $P(h(x) \neq h(y)) \leq P(h(x) \neq h(z))+P(h(z) \neq h(y))$

The cosine distance

- Cosine distance between two unit length vectors is the angle between them, which is in $[0,180]$
- $d(x, y)=\arccos x^{T} y$
- Non-negativity: trivial
- Symmetry: trivial
- $d(x, y)=0$ implies they are in the same direction
- Triangle inequality: argue physically.

Locality sensitive hashing

Let $d_{1}<d_{2}$ be two distances according to some distance measure d. Let $p_{1}>p_{2}$. A family F of functions is said to be $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive if for every $f \in F$,

- $d(x, y) \leq d_{1} \rightarrow P(f(x)=f(y)) \geq p_{1}$
- $d(x, y) \geq d_{2} \rightarrow P(f(x)=f(y)) \leq p_{2}$

Figure 3.9: Behavior of a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive function

Amplifying the probabilities-AND

- Create new functions by concatenating $\left\{f_{1}, \ldots, f_{r}\right\}$
- Create a new hash function g and declare $g(x)=g(y)$ iff $f_{i}(x)=f_{i}(y) \forall i$
- This new family of functions is $\left(d_{1}, d_{2}, p_{1}^{r}, p_{2}^{r}\right)$ sensitive
- Note that while each probability has decreased, the ratio $\left(p_{1} / p_{2}\right)$ has increased exponentially.

What one hash function gives you

What we want

Amplifying the probabilities-OR

- Create new functions by concatenating $\left\{f_{1}, \ldots, f_{r}\right\}$
- Create a new hash function g and declare $g(x)=g(y)$ iff $f_{i}(x)=f_{i}(y) \exists i$
- This new family of functions is $\left(d_{1}, d_{2}, 1-\left(1-p_{1}\right)^{r}, 1-\left(1-p_{2}\right)^{r}\right)$ sensitive
- Note that while each probability has decreased, the ratio ($1-p_{1} / 1-p_{2}$) has decreased exponentially.

Amplifying the probabilities-AND/OR cascades

- First create AND
- Then use a band of the AND's to create OR
- $1-\left(1-p^{r}\right)^{b}$

What amplification gives you

Example with minhash

- Take the minhash family with the Jaccard distance
- If $d(x, y)<d_{1}$, then $P(h(x)=h(y))=J(x, y) \geq 1-d_{1}$
- If $d(x, y)>d_{2}$, then $P(h(x)=h(y))=J(x, y) \leq 1-d_{2}$
- So the minhash family is $\left(d_{1}, d_{2}, 1-d_{1}, 1-d_{2}\right)$ sensitive

Hamming distance

- The number of components in which two vectors (of equal length) differ.
- Easy to see that this is a distance metric.

Hamming distance: hashing scheme

- Take two length d vectors
- Pick index i at random
- $f_{i}(x)=f_{i}(y)$ iff $x_{i}=y_{i}$
- $P\left(f_{i}(x)=f_{i}(y)\right)=1-d_{1} / d$
- So this is $\left(d_{1}, d_{2}, 1-d_{1} / d, 1-d_{2} / d\right)$ sensitive for any $0<d_{1}<d_{2}$

Cosine distance

- Pick a unit vector v at random
- $f_{v}(x)=f_{v}(y)$ iff $v^{\top} x, v^{T} y$ have the same sign.
- $P\left(f_{v}(x) \neq f_{v}(y)\right)=2 P\left(v^{\top} x \geq 0, v^{T} y \leq 0\right)=2 \frac{\theta(x, y)}{2 \pi}$

Euclidean distance

- Hash functions corresponding to random lines
- Partition the line into bins of size a
- Hash each point containing its projection onto the line
- Intuition: nearby points are always close; distant points are rarely in same bucket.

Euclidean distance

Euclidean distance

- If $d \ll a$, then $P(h(x)=h(y))=1-d / a$
- If $d>2 a$,
- We need $\cos \theta<1 / 2$ to have some nonzero probability of falling in the same bucket
- So $\theta \in[\pi / 3, \pi / 2]$
- So $P(h(x)=h(y)) \leq 1 / 3$
- So, $d_{1} \leq a / 2 \rightarrow p_{1} \geq 1 / 2$
- $d_{1} \geq 2 a \rightarrow p_{2} \leq 1 / 3$
- So (a/2, a, 1/2, 1/3) sensitive LSH family.
- Trouble is, before we had any $d_{1}<d_{2}$ now it seems we need $d_{1} \leq d_{2} / 4$

Euclidean distance

- But note that as long as $d_{1}<d_{2}$ the probability of falling in the same bucket in this scheme is always larger than probability of falling in two different buckets.
- So indeed, we have a $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$ sensitive family for any $d_{1}<d_{2}$ for some $p_{1}>p_{2}$.
- Now do the AND-OR constructions

Acknowledgment

- Ullman's lecture notes from "Mining of Massive Datasets".
- Some slides from http://infolab.stanford.edu/~ullman/ mining/2009/similarity3.pdf
- The S curve plot was taken from Scribe notes of EE381V at UT from Fall 2012

