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Distance measure

We call d(x , y) a distance metric between points x and y in some space,

if,

• d(x , y) ≥ 0

• d(x , y) = 0↔ x = y

• Symmetry: d(x , y) = d(y , x)

• Triangle inequality: d(x , y) ≤ d(x , z) + d(z , y)
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Examples

• Euclidian distance d(x , y) =

√
‖x − y‖2

• Lr norm, d(x , y) =

∑
i

|xi − yi |
r

1/r

• r = 1: Manhattan distance

• r →∞: infinity norm

• r = 2: Euclidean distance
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Examples: Jaccard distance

• Let x , y be sets

• d(x , y) = 1− Jaccard(x , y)

• Can you prove that this is a distance metric?

• Non-negativity is satisfied trivially

• d(x , y) = 0 implies |x ∪ y | = |x ∩ y |

• Symmetry is true trivially

• Triangle inequality?
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Examples: Jaccard distance

• Remember J(x , y) = P(h(x) = h(y)) where h is the min-hash?

• d(x , y) = P(h(x) 6= h(y))

• 1(h(x) 6= h(y)) ≤ 1(h(x) 6= h(z)) + 1(h(z) 6= h(y))

• This is because if h(x) 6= h(y), we cannot have h(x) = h(y) = h(z)

• So P(h(x) 6= h(y)) ≤ P(h(x) 6= h(z)) + P(h(z) 6= h(y))

4



The cosine distance

• Cosine distance between two unit length vectors is the angle

between them, which is in [0, 180]

• d(x , y) = arccos xT y

• Non-negativity: trivial

• Symmetry: trivial

• d(x , y) = 0 implies they are in the same direction

• Triangle inequality: argue physically.
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Locality sensitive hashing

Let d1 < d2 be two distances according to some distance measure d . Let

p1 > p2. A family F of functions is said to be (d1, d2, p1, p2)-sensitive if

for every f ∈ F ,

• d(x , y) ≤ d1 → P(f (x) = f (y)) ≥ p1

• d(x , y) ≥ d2 → P(f (x) = f (y)) ≤ p2
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Amplifying the probabilities-AND

• Create new functions by concatenating {f1, . . . , fr}

• Create a new hash function g and declare g(x) = g(y) iff

fi (x) = fi (y) ∀i

• This new family of functions is (d1, d2, p
r
1, p

r
2) sensitive

• Note that while each probability has decreased, the ratio (p1/p2) has

increased exponentially.
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What one hash function gives you
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What we want
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Amplifying the probabilities-OR

• Create new functions by concatenating {f1, . . . , fr}

• Create a new hash function g and declare g(x) = g(y) iff

fi (x) = fi (y) ∃i

• This new family of functions is (d1, d2, 1− (1− p1)
r , 1− (1− p2)

r )

sensitive

• Note that while each probability has decreased, the ratio

(1− p1/1− p2) has decreased exponentially.
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Amplifying the probabilities-AND/OR cascades

• First create AND

• Then use a band of the AND’s to create OR

• 1− (1− pr )b
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What amplification gives you
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Example with minhash

• Take the minhash family with the Jaccard distance

• If d(x , y) < d1, then P(h(x) = h(y)) = J(x , y) ≥ 1− d1

• If d(x , y) > d2, then P(h(x) = h(y)) = J(x , y) ≤ 1− d2

• So the minhash family is (d1, d2, 1− d1, 1− d2) sensitive
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Hamming distance

• The number of components in which two vectors (of equal length)

differ.

• Easy to see that this is a distance metric.
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Hamming distance: hashing scheme

• Take two length d vectors

• Pick index i at random

• fi (x) = fi (y) iff xi = yi

• P(fi (x) = fi (y)) = 1− d1/d

• So this is (d1, d2, 1− d1/d , 1− d2/d) sensitive for any 0 < d1 < d2
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Cosine distance

• Pick a unit vector v at random

• fv (x) = fv (y) iff vT x , vT y have the same sign.

• P(fv (x) 6= fv (y)) = 2P(vT x ≥ 0, vT y ≤ 0) = 2
θ(x , y)

2π
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Euclidean distance

• Hash functions corresponding to random lines

• Partition the line into bins of size a

• Hash each point containing its projection onto the line

• Intuition: nearby points are always close; distant points are rarely in

same bucket.
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Euclidean distance
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Euclidean distance

• If d � a, then P(h(x) = h(y)) = 1− d/a

• If d > 2a,

• We need cosθ < 1/2 to have some nonzero probability of falling in

the same bucket

• So θ ∈ [π/3, π/2]

• So P(h(x) = h(y)) ≤ 1/3

• So, d1 ≤ a/2→ p1 ≥ 1/2

• d1 ≥ 2a→ p2 ≤ 1/3

• So (a/2, a, 1/2, 1/3) sensitive LSH family.

• Trouble is, before we had any d1 < d2 now it seems we need

d1 ≤ d2/4
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Euclidean distance

• But note that as long as d1 < d2 the probability of falling in the

same bucket in this scheme is always larger than probability of

falling in two different buckets.

• So indeed, we have a (d1, d2, p1, p2) sensitive family for any d1 < d2

for some p1 > p2.

• Now do the AND-OR constructions
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