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Distance measure

We call d(x,y) a distance metric between points x and y in some space,
if,

d(x,y) >0

dx,y) =0+ x=y

Symmetry: d(x,y) = d(y, x)

Triangle inequality: d(x,y) < d(x,z) + d(z,y)



e Euclidian distance d(x,y) = \/||x — y|I2
1/r
e [, norm, d(x,y) Z Ixi —yil"

e r =1: Manhattan dlstance
e r — oo: infinity norm

e r = 2: Euclidean distance



Examples: Jaccard distance

e Let x,y be sets

o d(x,y) =1— Jaccard(x,y)

e Can you prove that this is a distance metric?
e Non-negativity is satisfied trivially

e d(x,y) =0 implies [xUy| = |xNy|

e Symmetry is true trivially

e Triangle inequality?



Examples: Jaccard distance

Remember J(x,y) = P(h(x) = h(y)) where h is the min-hash?
d(x,y) = P(h(x) # h(y))

1(h(x) # h(y)) < 1(h(x) # h(z)) + 1(h(z) # h(y))

This is because if h(x) # h(y), we cannot have h(x) = h(y) = h(z)
So P(h(x) # h(y)) < P(h(x) # h(2)) + P(h(z) # h(y))



The cosine distance

e Cosine distance between two unit length vectors is the angle
between them, which is in [0, 180]
e d(x,y)= arccosxTy

e Non-negativity: trivial

Symmetry: trivial

d(x,y) = 0 implies they are in the same direction

Triangle inequality: argue physically.



Locality sensitive hashing

Let d; < dy be two distances according to some distance measure d. Let

p1 > po. A family F of functions is said to be (dy, do, p1, po)-sensitive if

for every f € F,

e d(x,y) <di — P(f(x) = f(y)) > p1
e d(x,y) > dy = P(f(x) = f(y)) < p2
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Figure 3.9: Behavior of a (d1,da, p1, p2)-sensitive function 6



Amplifying the probabil

e Create new functions by concatenating {f,...,fr}

e Create a new hash function g and declare g(x) = g(y) iff
fi(x) = fily) Vi

e This new family of functions is (dy, d, p1, p5) sensitive

e Note that while each probability has decreased, the ratio (p1/p2) has
increased exponentially.



What one hash function gives you

Probability Remember:
of sharing probability of
a bucket equal hash-values
= similarity
t

Similarity s of twosets ——*



Probability
I =1ifs>¢t
Probability No chance
of sharing ifs<t
a bucket

t

Similarity s of twosets ——*



Amplifying the probabilities-OR

Create new functions by concatenating {f{,...,fr}

Create a new hash function g and declare g(x) = g(y) iff

fi(x) = fi(y) 3i

This new family of functions is (dy, do, 1 — (1 — p1)",1— (1 — p2)")
sensitive

Note that while each probability has decreased, the ratio
(1 = p1/1 = pp) has decreased exponentially.
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Amplifying the probab s-AND/OR cascades

e First create AND
e Then use a band of the AND’s to create OR
o 1-(1-p")P

1=4,p=2
— — —r=4)=40
=10,b=5
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What amplification gives you

I

Probability
of sharing
a bucket

t ~ (1/b)Vr
/

Similaritv s of two sets ——*

At least
one band No bands

identical ~ identical

\

1-(1-57)

/\

Some row All rows
of a band of a band

unequal are equal
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Example with minhash

Take the minhash family with the Jaccard distance

If d(x,y) < dq, then P(h(x) = h(y)) = J(x,y) > 1—dy

If d(x,y) > dp, then P(h(x) = h(y)) = J(x,y) <1—dy
So the minhash family is (d1,d»,1 — di,1 — dp) sensitive
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Hamming distance

e The number of components in which two vectors (of equal length)
differ.

e Easy to see that this is a distance metric.
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Hamming distance: hashing scheme

Take two length d vectors

e Pick index i at random

fi(x) = fily) iff x; = y;

P(fi(x) = fi(y) =1 — dy /d

So this is (dq,dp,1 — dy/d,1 — dp/d) sensitive for any 0 < di < dp
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Cosine distance

e Pick a unit vector v at random
o fy(x) = fu(y) iff v x,vTy have the same sign.

o P(fu(x)# fv(y)) = 2P(vTx >0, va <0)= 20(;7;1_}/)
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Euclidean distance

Hash functions corresponding to random lines

Partition the line into bins of size a

Hash each point containing its projection onto the line

Intuition: nearby points are always close; distant points are rarely in
same bucket.
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Euclidean distance

q Points at If d << 3, then
If d >> 5,6 must distance ¢ the chance the
be close to 90° ints in the
for there to be 0 aparc
; same bucket is
any chance points dcos 0 atleast1—d/a
go to the same '
bucket.
: = : = — : — : Randomly
< > chosen
Bucket line
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Euclidean distance

e If d < a, then P(h(x) = h(y))=1—d/a
o If d > 2a,
e We need cosfl < 1/2 to have some nonzero probability of falling in
the same bucket
e Sof e [n/3,7m/2]
e So P(h(x) = h(y)) <1/3

e So,dy <a/2—p>1/2

o di>2a—pp<1/3

e So (a/2,a,1/2,1/3) sensitive LSH family.

e Trouble is, before we had any d; < dy now it seems we need
di < dp/4
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Euclidean distance

e But note that as long as d; < dp the probability of falling in the
same bucket in this scheme is always larger than probability of
falling in two different buckets.

e So indeed, we have a (dq, d», p1, pp) sensitive family for any di < do
for some p; > po.

e Now do the AND-OR constructions
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