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Clustering or Community detection

1. A fundamental problem in exploratory analysis

2. Communities - groups of datapoints which behave similarly
2.1 Networks: nodes are entities, links represent interactions between
nodes. Communities could be
® positions of a chromatin which are associated via 3D looping
(Weinreb and Raphael 2005, Wang, S., Ursu, Kundaje and Bickel,
2018)

Ca0

® Nodes denote a position on the chromatin

edges measure how close they are in a 3D arrangement

Goal is to find loops or hairballs, formally known as Topologically
associated domains (TADs)

® These are preserved across cell types and also different species



The stochastic block model (Holland, Laskey and Leinhardt

1983)

Community
connections
B

Sparsity parameter
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Binary Connection Network
community probabilities Adjacency matrix
memberships P A
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Inference methods

1. We will start by writing down the log likelihood for a fixed ©.

2. First note that the conditional expectation matrix E[A|©] = ©BOT
is blockwise constant.

log P(A; ©, B)

=" Aylog Py + (1 — Ay) log(1 — Py)
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Inference methods

1. Let Bj =pand Bj=qfori#j
2. Let cluster sizes be equal and n/k

3. Let X =007

log P(A; ©, B)
= Ajlog P+ (1— Aj)log(1 - Py)
iJ
= Z Z @,‘k@jg (A;j log Bye + (1 = A,‘j) |Og(l = Bkg))
——

Wk i ieCje,

= Z <X,-J-A,-j log 1 _p 5 + (1 — Xjj)Ajj log 1 i q) + log(1 — p)n?/k + log(:
i




Inference methods

1. Let Bj =pand Bj=qfori#j
2. Let cluster sizes be equal and n/k

3. Let X =007

log P(A; ©, B)
= Ajlog P+ (1— Aj)log(1 - Py)
i

= Z Z @,‘k@jg (A;j log Bye + (1 = A,‘j) |Og(l = Bkg))
ij kJ . .. .
1if ieCy,jeCy

= Z (XUAU log -
=n Z Ajj + const

+ (1 — Xjj)Ajj log 1 i q) + log(1 — p)n?/k + log(:



Optimization perspective

1. Optimization goal -

arg max (007 A),
eF

with F being some feasible set.
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Optimization perspective

1. Optimization goal -

arg max (007 A),
eF

with F being some feasible set.

2. Question is, what is F?

3. For k equal communities, e’e = %I, where [ is the identity matrix.
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Spectral Clustering

1. Consider
arg max (007 A)
CHCEEY

2. As it turns out, this returns the top k eigenvectors of A (suitably
scaled).

2.1 Widely used in ML (Ng et al 2002, Shi and Malik 2001)

2.2 Often you compute top k eigenvectors of the normalized adjacency
matrix. (for consistency results, see Rohe et al 2010)



Spectral Clustering - why this works

: \ )
Connection = \-

probabilities P

Eigenvector rows < community

| = infer #; from U; ; Plot of rows of U



Spectral Clustering - try with code

1. Lets generate a network from a blockmodel

2. First figure out parameters

K=2

m=50

n=K*m
i=numpy.zeros([n,2])
Z[0:m,0]=1;

Z[m:n,1l]=1;
B=np.array([([.3, .1]), [.1, .3]])
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Spectral Clustering - try with code

1. Now build a symmetric random uniform matrix

P=I.dot(B).dot(numpy.transpose(Z))

R=numpy.randoem.uniform(size=[n,n])
Rl=triu(R)+numpy.transpose(triu(R))
A=1*(R1<P)

A=A-np.diag(np.diag(a))
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Spectral Clustering - try with code

Dl=np.diag(sum(A,axis=0)**(-.5))
Kl=Dl.dot(A).dot(D1l)

. t=svd (K1
1. Do Spectral Clustering ~'=2*V= =" (K1)
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2. Accuracy of kmeans 90%
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Spectral Clustering - sparse graph

1. Now generate a sparse graph with average degree about one fifth

2. How will you normalizing using degrees if there are zero degree nodes
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Spectral Clustering - sparse graph

1. Now generate a sparse graph with average degree about one fifth
2. How will you normalizing using degrees if there are zero degree nodes

3. The trick is to use a diagonal to the degree matrix with 7/, where 7
is avg degree.
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Spectral Clustering - sparse graph

1. Why would this work?
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Spectral Clustering - sparse graph

1. Run k-means on the top 2 eigenvectors of D~Y/2AD~1/2
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Spectral Clustering - sparse graph

1. Run k-means on the top 2 eigenvectors of D~1/2AD~1/2
2. Accuracy is about 50%

3. What if we also do the row normalization

4. Accuracy is 90%

5. Next — Convex relaxations
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1. Recall our simple setting

2. Maximizing the log likelihood boiled down to maximizing
arg maxee}.(@@T, A)
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Convex relaxations

1. Recall our simple setting

2. Maximizing the log likelihood boiled down to maximizing
arg maxee}.(@@T, A)

3. Natural feasible set is
F ={0;, €[0,1],Vi € [n],a € [K]
> @, =1,Vi € [n]}

4. Instead of the above nonconvex objective, we will consider:

arg ;neax/<X A)

This is a convex objective function as long as we are careful about F’

16



Convex relaxations

1. We can think of the ideal X as a clustering matrix

{1 if i,/ belong to same class
Xij =

0 otherwise
2. We can use a slightly different feasible set, namely

F' ={X; €[0,1],i,j € [n]
Xi=1

ZXU = n/k,Vi € [n]

X + 0}

17



Semidefinite relaxations -pros

1. Variety of feasible sets for blockmodels and degree corrected
blockmodels
1.1 Guéndon and Vershynin 2015, Amini and Levina 2017, Yan and S.
2018, Perry and Wein 2015, Chen et al 2012, 2015

18



Semidefinite relaxations -pros

1. Variety of feasible sets for blockmodels and degree corrected
blockmodels

1.1 Guéndon and Vershynin 2015, Amini and Levina 2017, Yan and S.
2018, Perry and Wein 2015, Chen et al 2012, 2015

2. Robust to outliers (Cai et al 2014, Yan and S. 2016)

18



Semidefinite relaxations -pros

1. Variety of feasible sets for blockmodels and degree corrected
blockmodels

1.1 Guéndon and Vershynin 2015, Amini and Levina 2017, Yan and S.
2018, Perry and Wein 2015, Chen et al 2012, 2015

2. Robust to outliers (Cai et al 2014, Yan and S. 2016)

3. Has superior performance for sparse networks (Guedon et al 2014)
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Semidefinite relaxations

1. Very slow, scales to a few thousands of nodes
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Semidefinite relaxations

1. Very slow, scales to a few thousands of nodes

2. Requires to store n x n clustering matrix-may become prohibitive for
large networks

2.1 Recently there have been a lot of effort on optimizing quantities like
(A YYT)

2.2 Known as Burer Monteiro methods, these have been shown to enjoy
nice theoretical properties, e.g. the local optima in fact are the
global optima, and saddle points can be escaped [Mei et al, 2017,
Boumal et al 2018].
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Generalizations of a blockmodel

‘ Stochastic Blockmodel ‘

Allow a node to belong
Allow degree heterogeneity to multiple communities

Degree Corrected Mixed Membership
Stochastic Blockmodel Stochastic Blockmodel

Degree corrected Mixed
Membership model

20



A real clustering dataset

1. Lets talk about the political blogs dataset.

2. Here, every node is a political blog, a link signifies which blog points

to which other blog.
3. The labels (blue and red) signify political orientation of the blogs

Figure 1: Lada Adamic and Natalie Glance.” The political blogosphere and the 2004
US election: divided they blog.” Proceedings of the 3rd international workshop on
Link discovery. ACM, 2005.
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Political blogs degree distribution

Figure 2: Histogram

of degrees of nodes (after removing directions on edges)
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Political blogs degree distribution

Figure 2: Histogram of degrees of nodes (after removing directions on edges)

1. Spectral Clustering using the top 2 eigenvectors of A fails here —
clustering accuracy 60%
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Degree-corrected SBM (Karrer, Newman 2010)

Degree homogeneity in SBM models

1. Expected degrees are equal among different nodes

2. Real networks, there are usually “hub” - nodes with very large
degrees

23



Degree-corrected SBM (Karrer, Newman 2010)

Degree homogeneity in SBM models

1. Expected degrees are equal among different nodes

2. Real networks, there are usually “hub” - nodes with very large
degrees

Easy to fix-

1. Add degree parameter to each node that encodes the popularity

2. P(Aj = 1) = pyyi;0] BYj, where ~; is the degree parameter of
node i.

3. Put constraints on the sum of them to make things identifiable.
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Methods and related work
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Methods and related work

o

Un-normalized and Row normalized top K eigenvectors

1. Normalize top K eigenvectors and do clustering (Chaudhuri et al 2012,
Qin et al 2013)

2. k-median based clustering algorithm on a low rank approximation of A
followed by a refinement procedure. (Gao et al 2016).

3. SDP-based methods with regularization (Chen et al 2017)
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Political blogs again

1. If we take the top eigenvectors of the adjacency matrix and row
normalize them prior to kmeans, the accuracy is around 80%

2. If we just do normalized Spectral clustering on the largest connected
component, then the error is nearly 50% (whether we row normalize or
not)

3. If we do regularized spectral clustering without row normalization, error
is about 30%.

4. If we do regularized spectral clustering with row normalization, error is
about 5%.
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Generalizations of SBM

‘ Stochastic Blockmodel ‘

Allow a node to belong
Allow degree heterogeneity to multiple communities

Degree Corrected Mixed Membership
Stochastic Blockmodel Stochastic Blockmodel

Degree corrected Mixed
Membership model
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Methods and related work

1. SDP’s cannot be extended easily to this settings.
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1. SDP’s cannot be extended easily to this settings.
Variational inference (Airoldi et al 2008, Gopalan et al 2013)
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Chakrabarti 2017).
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Methods and related work

1. SDP’s cannot be extended easily to this settings.
Variational inference (Airoldi et al 2008, Gopalan et al 2013)
Tensor based methods (Anandkumar 2014, Hopkins et al 2018)

e

If B is positive semidefinite, then one can pose this as a symmetric
non-negative matrix factorization problem (SNMF).

4.1 Bayesian variant of NMF (Psorakis 2011)

4.2 Use geometric intuition to solve the SNMF problem (Mao, S. and
Chakrabarti 2017).

5. For degree corrected mixed membership models, one needs to adapt
the Spectral algorithms further (see Zhang and Levina 2014, Jin et al
2017, Mao et al 2019).
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The Mixed Membership Blockmodel (Airoldi et al, 2008)

1. Number of communities K

2. K x K matrix of connection probabilities B
3. 0; ~ Dirichlet(ay, . .., ak)

4. Aj ~ E[A;j|0] = pa8] BO; = Call this P

5. Special case : Stochastic blockmodel when a; — 0
5.1 All 9; € {0,1}* have exactly one 1.

6. Large a; = more overlap and small a, = less overlap

7. Goal: Given A, infer {6;} and B

28



Dirichlet distribution

1. Parameters: aq,...,ax >0

i—1
[[x"

2. Density f(xi,...,Xxk) = “Bla)
(0%

3. Where xi,...xx > 0 belong to the K — 1 simplex, i.e.
ZX,‘ = 1,X,‘ Z 0

https://upload.wikimedia.org/wikipedia/commons/thumb/
5/54/LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif/
500px-LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif

29
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The Mixed Membership Stochastic Blockmodel (MMSB)

a = (.005,.005)

« is the Dirichlet parameter for 6;

Given A, infer {6;} and B ‘

30



Eigenvectors for 3 blocks
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Stochastic Blockmodel MMSB with o = (.2,.2,.2)

1. Highlighted are S = {i : max, 0;, > .9}.
2. These are “pure” nodes
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Methods and related work

1. Notable methods include Variational inference (Airoldi et al 2008,
Gopalan et al 2013)

2. Tensor based methods (Anandkumar 2014, Hopkins et al 2018)

3. If B is positive semidefinite, then one can pose this as a symmetric
non-negative matrix factorization problem (SNMF).

3.1 Bayesian variant of NMF (Psorakis 2011)

3.2 Use geometric intuition to solve the SNMF problem (Mao, S. and
Chakrabarti 2017).

32



Building the geometric intuition

1. Eigenvectors of P fall on a simplex
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<

Building the geometric intuition

. Eigenvectors of P fall on a simplex

Collect k pure nodes from all clusters, build Vp with rows of V
belonging to P

Op=1

B =0pBO} = VpEV]

©pBOT = VpEVT

VI = E-'V;'BOT = VJOT, ie. V=0Vp
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Building the geometric intuition

1. Eigenvectors fall on a simplex

® We are essentially looking for a way to learn with K simplexes in K
dimensional space
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Building the geometric intuition

1. Eigenvectors fall on a simplex

® We are essentially looking for a way to learn with K simplexes in K
dimensional space

® All points are convex combinations of the corners

® Once you find the corners, all the parameters can be learned using a
simple regression step

2. Let us try some simple ideas to find corners.

8. What if | find the node with maximum length?
3.1 Indeed, it gives you“a nearly pure node” (with high probability).

34



Building the geometric intuition

1. Scalable methods (Gillis et al 2014) in computational geometry to
find corners of a noisy simplex with K corners in K dimensions.

1.1 Find a node with largest ¢> norm
1.2 Remove its projection from the other rows.

1.3 Repeat for K times.
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Building the geometric intuition with eigenvectors of P
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Building the geometric intuition with eigenvectors of P
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Building the geometric intuition with eigenvectors




Putting everything together

1. Let V be eigenvectors of P
2. Let S denote the set of pure nodes

3. As it turns out, in the mixed membership model, we have:

V =0Vs

37



Putting everything together

1. Let V be eigenvectors of P
2. Let S denote the set of pure nodes

3. As it turns out, in the mixed membership model, we have:

V =0Vs

4. Now, if we estimate the pure nodes by a set S, how do we get back
to ©7

37



Putting everything together

1. Let V be eigenvectors of P
2. Let S denote the set of pure nodes

3. As it turns out, in the mixed membership model, we have:

V =0Vs

4. Now, if we estimate the pure nodes by a set S, how do we get back
to ©7

37



Putting everything together

1. Simple: use

2. Recall

BT =VEV' = B=(0"0)'0"VEV'O(O"0)!
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Putting everything together

1. Simple: use

>

W

2. Recall

BT =VEV' = B=(0"0)'0"VEV'O(O"0)!

3. But Vs = (©7©)10@"V, from Eq 1.
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Estimation in Random Dot Product Graphs

(RDPG models)

1. Edge probabilities [Young and Scheinerman 2007]

P(A;=11Y)=( Xi ,X)

Latent positions

2. The generalized RDPG model [Rubin-Delanchy et al, 2017]
encompasses the Stochastic Blockmodel and its variants

3. Popular methods include network embedding approaches using the
adjacency matrix and its variants (Sussman et al 2012, Fishkind et
al 2013, Tang et al 2013, Le et al 2017, Athreya et al 2016).
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Estimation in Random Dot Product Graphs

(RDPG models)

. If we can just use Spectral Clustering, why go into all the trouble to
do all we did for MMSB?

. We could have just used X = VE/2

. But note that, X by itself does not mean anything. It can be used
to cluster nodes for clustering models like blockmodels.

. But when there is mixed memberships, X is essentially a

transformed version of ©.

. But in order to get to ©, we need to do more work.

40



Triangle formation and block models

1. Real social networks have many triangles, even if they are sparse.

2. To be particular, the global clustering coefficient, defined as number
of triangles divided by number of closed or open triplets is often
used to measure ‘“clustered” networks are.

3. But for blockmodels or its variants, as the network gets sparser, the
network becomes more treelike.
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Triangle formation and block models

1. Real social networks have many triangles, even if they are sparse.

2. To be particular, the global clustering coefficient, defined as number
of triangles divided by number of closed or open triplets is often
used to measure “clustered” networks are.
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Latent distance models

1. Latent distance models model homophily or transitivity by
introducing a latent space where nodes lie.

2. Two nodes close in the latent space are more likely to be connected.

3. Why do you think this leads to transitivity and reciprocity (what is
that)?

43



Latent distance models

1. Reciprocity:
1.1 If i — j, then the event j — i is more likely.

1.2 Why?
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Latent distance models

1. Reciprocity:
1.1 If i — j, then the event j — i is more likely.

1.2 Why?

2. Transitivity:

2.1 If i = j and j — k, then i — k is more likely.

2.2 Why?
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Latent Distance Models [Hoff et al 2002]

1. Log likelihood:

log P(A | n) Z{nu ij—log(1+e€")},
i#

where n; = log odds(Aj, zi, zj)) = a — ||z; — zj||2

2. Two stage approaches, which initialize with Spectral methods [S.
and Moore, 2005] — no guarantee for global optima

3. Recently there has been some work on consistency of convex
relaxation based inference, and non-convex inference methods [Ma
et al 2020].
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Estimation for Latent Space Models: Bayesian Approach

1. Log likelihood:

log P(A | zi,i €[n] )= _{ny- Ay —log(1+e™)},
7

Latent positions
where n; = log odds(Aj, zi, zj) = a — ||z; — zj||2
2. Alternatively, place priors on «, Z.
3. Use Metropolis-Hastings to update Z and « serially.

4. The Bayesian approach can be computationally prohibitive for larger
networks.
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