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Clustering or Community detection

1. A fundamental problem in exploratory analysis

2. Communities - groups of nodes which behave similarly

2.1 Networks: nodes are entities, links represent interactions between
nodes. Communities could be
2.1.1 groups of users in Facebook
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Clustering or Community detection

1. A fundamental problem in exploratory analysis

2. Communities - groups of datapoints which behave similarly
2.1 Networks: nodes are entities, links represent interactions between

nodes. Communities could be
• positions of a chromatin which are associated via 3D looping

(Weinreb and Raphael 2005, Wang, S., Ursu, Kundaje and Bickel,

2018)

marks the start of a domain and the next transition out of upstream

bias marks its end. Sauria et al. (2014) introduce a 1D statistic called

the ‘boundary index’ (BI) which captures sudden shifts in interaction

preference. Sauria et al. (2014) identify domain boundaries by call-

ing peaks in the BI, but do not explicitly pair these boundaries into

domains, leaving the domain structure ambiguous.

Recently, a number of methods have been introduced to identify

chromatin domains using the full 2D contact matrix. Filippova et al.

(2014) use dynamic programing to find domains with maximal

intra-domain contact frequency. This method includes a tunable size

parameter and outputs the set of non-overlapping domains that are

most robust to changes in the parameter value. More recently, Lévy-

Leduc et al. (2014) developed a 2D model that fits a block diagonal

matrix to observed contacts using maximum likelihood. This

method is based on a generative model where the expected contact

frequency across a TAD is uniform.

All the methods above assume that TADs are non-overlapping.

However, several studies have observed a hierarchical chromatin

organization including both TADs and sub-TADs within them

(Fig. 1). Although TADs are conserved across cell types, sub-TADs

are thought to vary between cell types and may facilitate changes

in gene regulation during differentiation (Phillips-Cremins et al.,

2013) and development (Berlivet et al., 2013). In addition, distinct

combinations of proteins such as CTCF, Mediator and Cohesin

may demarcate TAD and sub-TAD boundaries (Phillips-Cremins

et al., 2013; Zuin et al., 2014). The distinct properties of TADs

and sub-TADs highlight the need for methods that can detect both

simultaneously. A very recent development in this direction is the

‘Arrowhead’ algorithm (Rao et al., 2014). Although this algorithm

can identify overlapping domains, it does not explicitly require

that overlapping domains be nested, and it is at present not pub-

licly available.

In this article, we introduce the TADtree algorithm, which de-

tects nested hierarchies of TADs. In contrast to previously published

methods that rely on ad hoc assumptions about the structure of

TADs, we derive a straightforward model for the frequency of con-

tacts within TADs. Our model is based on the empirical observation

that within TADs, the enrichment of contacts over background

grows linearly with the distance between bins, but at a rate that de-

pends on the TAD length. Thus, every TAD can be characterized by

two parameters: b, the baseline enrichment for contacts between ad-

jacent bins within the TAD and d, the rate at which contact fre-

quency increases with distance between bins. Using reported TADs

from previous studies, we derive relationships between the values of

b and d when one TAD is nested inside another. From these observa-

tions, we propose a model for TAD hierarchies.

We combine our model for contact enrichment within TADs

with a 1D BI similar to the one used by Sauria et al. (2014). We for-

mulate and optimize an objective function that scores a hierarchy of

nested TAD trees according to both the fit to the observed contact

matrix and the BI of each TAD and sub-TAD in the hierarchy. We

demonstrate that our resulting TADtree algorithm outperforms

existing methods on real data, predicting TADs that have greater en-

richment for binding of factors known to delineate chromatin or-

ganization, and showing greater overlap with high-resolution data.

2 Methods

2.1 Model
Background contact frequencies

Consider a chromosome of length J (in bins) and a J! J symmetric

matrix A, where Aij is the frequency of contact between bins i and j.

Typically, Aij represents a normalized count of paired sequencing

reads, where each read represents a ligation event between DNA

fragments derived from bins i and j, respectively. Based on A, we

form a ‘background’ function B giving the mean contact frequency

for bins at each distance d. Formally,

BðdÞ ¼ 1

J % d

XJ%d

i¼1

Ai;iþd: (1)

Modeling TADs

A TAD, D, is modeled by the quadruple D ¼ ðLD;RD; dD;bDÞ, spe-

cifying an interval ½LD;RD( of bins and two parameters dD and bD,

which determine the expected contact frequency at each intra-TAD

bin pair, as follows:

~ADðl; kÞ ¼ ððk% lÞdD þ bDÞBðk% lÞ for LD) l)k)RD: (2)

~AD expresses the expected enrichment of contacts over background
~ADðl;kÞ
Bðk%lÞ as a linear function of the distance jk% lj, having slope dD and

intercept bD.

This model is motivated by the observed properties of TADs

identified by Dixon et al. (2012). We grouped TADs with similar

sizes and computed the enrichment of contacts over background for

Fig. 1. Illustration of hierarchical TAD structure. A Hi-C contact map is shown on the left, with a close-up of the diagonal top-right. TADs and sub-TADs are anno-

tated as triangles. The corresponding DNA structure is illustrated below
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• Nodes denote a position on the chromatin
• edges measure how close they are in a 3D arrangement
• Goal is to find loops or hairballs, formally known as Topologically

associated domains (TADs)
• These are preserved across cell types and also different species
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The stochastic block model (Holland, Laskey and Leinhardt

1983)

4



Inference methods

1. We will start by writing down the log likelihood for a fixed Θ.

2. First note that the conditional expectation matrix E [A|Θ] = ΘBΘT

is blockwise constant.

logP(A; Θ,B)

=
∑
i,j

Aij logPij + (1− Aij) log(1− Pij)

=
∑
i,j

∑
k,`

ΘikΘj`︸ ︷︷ ︸
1 if i∈Ck ,j∈C`

(Aij logBk` + (1− Aij) log(1− Bk`))
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Inference methods

1. Let Bii = p and Bij = q for i 6= j

2. Let cluster sizes be equal and n/k

3. Let X = ΘΘT

logP(A; Θ,B)

=
∑
i,j

Aij logPij + (1− Aij) log(1− Pij)

=
∑
i,j

∑
k,`

ΘikΘj`︸ ︷︷ ︸
1 if i∈Ck ,j∈C`

(Aij logBk` + (1− Aij) log(1− Bk`))

=
∑
i,j

(
XijAij log

p

1− p
+ (1− Xij)Aij log

q

1− q

)
+ log(1− p)n2/k + log(1− q)(n2 − n2/k)

= η
∑
i,j

XijAij + const
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Optimization perspective

1. Optimization goal -

arg max
Θ∈F
〈ΘΘT ,A〉,

with F being some feasible set.

2. Question is, what is F?

3. For k equal communities, ΘTΘ = n
k I , where I is the identity matrix.
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Spectral Clustering

1. Consider
arg max

ΘTΘ= n
k I
〈ΘΘT ,A〉

2. As it turns out, this returns the top k eigenvectors of A (suitably

scaled).

2.1 Widely used in ML (Ng et al 2002, Shi and Malik 2001)

2.2 Often you compute top k eigenvectors of the normalized adjacency

matrix. (for consistency results, see Rohe et al 2010)

8



Spectral Clustering

1. Consider
arg max

ΘTΘ= n
k I
〈ΘΘT ,A〉

2. As it turns out, this returns the top k eigenvectors of A (suitably

scaled).

2.1 Widely used in ML (Ng et al 2002, Shi and Malik 2001)

2.2 Often you compute top k eigenvectors of the normalized adjacency

matrix. (for consistency results, see Rohe et al 2010)

8



Spectral Clustering - why this works
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Spectral Clustering - try with code

1. Lets generate a network from a blockmodel

2. First figure out parameters
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Spectral Clustering - try with code

1. Now build a symmetric random uniform matrix
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Spectral Clustering - try with code

1. Do Spectral Clustering

2. Accuracy of kmeans 90%
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Spectral Clustering - sparse graph

1. Now generate a sparse graph with average degree about one fifth

2. How will you normalizing using degrees if there are zero degree nodes

3. The trick is to use a diagonal to the degree matrix with τ I , where τ

is avg degree.
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Spectral Clustering - sparse graph

1. Why would this work?
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Spectral Clustering - sparse graph

1. Run k-means on the top 2 eigenvectors of D−1/2AD−1/2

2. Accuracy is about 50%

3. What if we also do the row normalization

4. Accuracy is 90%

5. Next – Convex relaxations
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Convex relaxations

1. Recall our simple setting

2. Maximizing the log likelihood boiled down to maximizing

arg maxΘ∈F 〈ΘΘT ,A〉

3. Natural feasible set is

F = {Θia ∈ [0, 1],∀i ∈ [n], a ∈ [k]∑
a

Θia = 1,∀i ∈ [n]}

4. Instead of the above nonconvex objective, we will consider:

arg max
X∈F ′

〈X ,A〉

This is a convex objective function as long as we are careful about F ′
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Convex relaxations

1. We can think of the ideal X as a clustering matrix

Xij =

{
1 if i , j belong to same class

0 otherwise

2. We can use a slightly different feasible set, namely

F ′ = {Xij ∈ [0, 1],∀i , j ∈ [n]

Xii = 1∑
j

Xij = n/k ,∀i ∈ [n]

X � 0}
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Semidefinite relaxations -pros

1. Variety of feasible sets for blockmodels and degree corrected

blockmodels

1.1 Guéndon and Vershynin 2015, Amini and Levina 2017, Yan and S.

2018, Perry and Wein 2015, Chen et al 2012, 2015

2. Robust to outliers (Cai et al 2014, Yan and S. 2016)

3. Has superior performance for sparse networks (Guedon et al 2014)
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Semidefinite relaxations

1. Very slow, scales to a few thousands of nodes

2. Requires to store n× n clustering matrix–may become prohibitive for

large networks

2.1 Recently there have been a lot of effort on optimizing quantities like

〈A,YY T 〉

2.2 Known as Burer Monteiro methods, these have been shown to enjoy

nice theoretical properties, e.g. the local optima in fact are the

global optima, and saddle points can be escaped [Mei et al, 2017,

Boumal et al 2018].
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Generalizations of a blockmodel
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A real clustering dataset

1. Lets talk about the political blogs dataset.

2. Here, every node is a political blog, a link signifies which blog points

to which other blog.

3. The labels (blue and red) signify political orientation of the blogsIntroduction and Examples Estimation in Nonparametric Models Fitting Block Models Testing for Structure Discussion

Political blogs

Understanding political patterns

• http://www.gallup.com/poll/144347/obama-approval-advances-pre-election.aspx

• Adamic, Lada A., and Natalie Glance. ”The political blogosphere and the 2004 US

election: divided they blog.” Proceedings of the 3rd international workshop on Link

discovery. ACM, 2005.

Figure 1: Lada Adamic and Natalie Glance.”The political blogosphere and the 2004

US election: divided they blog.” Proceedings of the 3rd international workshop on

Link discovery. ACM, 2005.
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Political blogs degree distribution

Figure 2: Histogram of degrees of nodes (after removing directions on edges)

1. Spectral Clustering using the top 2 eigenvectors of A fails here –

clustering accuracy 60%
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Degree-corrected SBM (Karrer, Newman 2010)

Degree homogeneity in SBM models

1. Expected degrees are equal among different nodes

2. Real networks, there are usually “hub” - nodes with very large

degrees

Easy to fix-

1. Add degree parameter to each node that encodes the popularity

2. P(Aij = 1) = ρnγiγjθ
T
i Bθj , where γi is the degree parameter of

node i .

3. Put constraints on the sum of them to make things identifiable.
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Methods and related work

Un-normalized and Row normalized top K eigenvectors

1. Normalize top K eigenvectors and do clustering (Chaudhuri et al 2012,

Qin et al 2013)

2. k-median based clustering algorithm on a low rank approximation of A

followed by a refinement procedure. (Gao et al 2016).

3. SDP-based methods with regularization (Chen et al 2017)
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Political blogs again

1. If we take the top eigenvectors of the adjacency matrix and row

normalize them prior to kmeans, the accuracy is around 80%

2. If we just do normalized Spectral clustering on the largest connected

component, then the error is nearly 50% (whether we row normalize or

not)

3. If we do regularized spectral clustering without row normalization, error

is about 30%.

4. If we do regularized spectral clustering with row normalization, error is

about 5%.
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Generalizations of SBM
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Methods and related work

1. SDP’s cannot be extended easily to this settings.

2. Variational inference (Airoldi et al 2008, Gopalan et al 2013)

3. Tensor based methods (Anandkumar 2014, Hopkins et al 2018)

4. If B is positive semidefinite, then one can pose this as a symmetric

non-negative matrix factorization problem (SNMF).

4.1 Bayesian variant of NMF (Psorakis 2011)

4.2 Use geometric intuition to solve the SNMF problem (Mao, S. and

Chakrabarti 2017).

5. For degree corrected mixed membership models, one needs to adapt

the Spectral algorithms further (see Zhang and Levina 2014, Jin et al

2017, Mao et al 2019).
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The Mixed Membership Blockmodel (Airoldi et al, 2008)

1. Number of communities K

2. K × K matrix of connection probabilities B

3. θi ∼ Dirichlet(α1, . . . , αK )

4. Aij ∼ E [Aij |θ] = ρnθ
T
i Bθj = Call this P

5. Special case : Stochastic blockmodel when αa → 0

5.1 All θi ∈ {0, 1}K have exactly one 1.

6. Large αa ≡ more overlap and small αa ≡ less overlap

7. Goal: Given A, infer {θi} and B

28



Dirichlet distribution

1. Parameters: α1, . . . , αK > 0

2. Density f (x1, . . . , xK ) =

∏
i x
αi−1
i

B(α)

3. Where x1, . . . xk ≥ 0 belong to the K − 1 simplex, i.e.∑
i

xi = 1, xi ≥ 0

https://upload.wikimedia.org/wikipedia/commons/thumb/

5/54/LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif/

500px-LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif
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The Mixed Membership Stochastic Blockmodel (MMSB)

α = (.005, .005) α = (.2, .2) α = (2, 2)

α is the Dirichlet parameter for θi

Given A, infer {θi} and B

30



Eigenvectors for 3 blocks

Stochastic Blockmodel MMSB with α = (.2, .2, .2)

1. Highlighted are S = {i : maxa θia > .9}.
2. These are “pure” nodes
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Methods and related work

1. Notable methods include Variational inference (Airoldi et al 2008,

Gopalan et al 2013)

2. Tensor based methods (Anandkumar 2014, Hopkins et al 2018)

3. If B is positive semidefinite, then one can pose this as a symmetric

non-negative matrix factorization problem (SNMF).

3.1 Bayesian variant of NMF (Psorakis 2011)

3.2 Use geometric intuition to solve the SNMF problem (Mao, S. and

Chakrabarti 2017).
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Building the geometric intuition

1. Eigenvectors of P fall on a simplex

2. Collect k pure nodes from all clusters, build VP with rows of V

belonging to P

3. ΘP = I

4. B = ΘPBΘT
P = VPEV

T
P

5. ΘPBΘT = VPEV
T

6. V T = E−1V−1
P BΘT = V T

P ΘT , i.e. V = ΘVP

33
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Building the geometric intuition

1. Eigenvectors fall on a simplex

• We are essentially looking for a way to learn with K simplexes in K

dimensional space

• All points are convex combinations of the corners

• Once you find the corners, all the parameters can be learned using a

simple regression step

2. Let us try some simple ideas to find corners.

3. What if I find the node with maximum length?

3.1 Indeed, it gives you“a nearly pure node” (with high probability).
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Building the geometric intuition

1. Scalable methods (Gillis et al 2014) in computational geometry to

find corners of a noisy simplex with K corners in K dimensions.

1.1 Find a node with largest `2 norm

1.2 Remove its projection from the other rows.

1.3 Repeat for K times.
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Building the geometric intuition with eigenvectors of P

36



Building the geometric intuition with eigenvectors of P
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Building the geometric intuition with eigenvectors of P
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Putting everything together

1. Let V be eigenvectors of P

2. Let S denote the set of pure nodes

3. As it turns out, in the mixed membership model, we have:

V = ΘVS

4. Now, if we estimate the pure nodes by a set Ŝ , how do we get back

to Θ?
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to Θ?

37



Putting everything together

1. Simple: use

V̂ = Θ̂V̂Ŝ ⇒ Θ̂ = V̂ V̂−1

Ŝ
(1)

2. Recall

ΘBΘT = VEV T ⇒ B = (ΘTΘ)−1ΘTVEV TΘ(ΘTΘ)−1

3. But VS = (ΘTΘ)−1ΘTV , from Eq 1.

B̂ = V̂Ŝ Ê V̂
T
Ŝ
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Estimation in Random Dot Product Graphs

(RDPG models)

1. Edge probabilities [Young and Scheinerman 2007]

P(Aij = 1 | Y ) = 〈 Xi︸︷︷︸
Latent positions

,Xj〉

2. The generalized RDPG model [Rubin-Delanchy et al, 2017]

encompasses the Stochastic Blockmodel and its variants

3. Popular methods include network embedding approaches using the

adjacency matrix and its variants (Sussman et al 2012, Fishkind et

al 2013, Tang et al 2013, Le et al 2017,Athreya et al 2016).
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Estimation in Random Dot Product Graphs

(RDPG models)

1. If we can just use Spectral Clustering, why go into all the trouble to

do all we did for MMSB?

2. We could have just used X̂ = V̂ Ê 1/2

3. But note that, X̂ by itself does not mean anything. It can be used

to cluster nodes for clustering models like blockmodels.

4. But when there is mixed memberships, X̂ is essentially a

transformed version of Θ.

5. But in order to get to Θ, we need to do more work.
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Triangle formation and block models

1. Real social networks have many triangles, even if they are sparse.

2. To be particular, the global clustering coefficient, defined as number

of triangles divided by number of closed or open triplets is often

used to measure “clustered” networks are.

3. But for blockmodels or its variants, as the network gets sparser, the

network becomes more treelike.
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Triangle formation and block models

1. Real social networks have many triangles, even if they are sparse.

2. To be particular, the global clustering coefficient, defined as number

of triangles divided by number of closed or open triplets is often

used to measure “clustered” networks are.
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Latent distance models

1. Latent distance models model homophily or transitivity by

introducing a latent space where nodes lie.

2. Two nodes close in the latent space are more likely to be connected.

3. Why do you think this leads to transitivity and reciprocity (what is

that)?
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Latent distance models

1. Reciprocity:

1.1 If i → j , then the event j → i is more likely.

1.2 Why?

2. Transitivity:

2.1 If i → j and j → k, then i → k is more likely.

2.2 Why?
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Latent Distance Models [Hoff et al 2002]

1. Log likelihood:

logP(A | η) =
∑
i 6=j

{ηij · Aij − log (1 + eηij )} ,

where ηij = log odds(Aij , zi , zj) = α− ‖zi − zj‖2

2. Two stage approaches, which initialize with Spectral methods [S.

and Moore, 2005] – no guarantee for global optima

3. Recently there has been some work on consistency of convex

relaxation based inference, and non-convex inference methods [Ma

et al 2020].
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Estimation for Latent Space Models: Bayesian Approach

1. Log likelihood:

logP(A | zi , i ∈ [n]︸ ︷︷ ︸
Latent positions

) =
∑
i 6=j

{ηij · Aij − log (1 + eηij )} ,

where ηij = log odds(Aij , zi , zj) = α− ‖zi − zj‖2

2. Alternatively, place priors on α, Z .

3. Use Metropolis-Hastings to update Z and α serially.

4. The Bayesian approach can be computationally prohibitive for larger

networks.
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