

Stat Models for Big Data

Graph representation learning - node2vec

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

https://psarkar.github.io/teaching

Machine learning tasks with networks

- Link prediction:
 - Given the network structure, can we predict missing edges?
 - Useful for suggesting new friends, new products, etc.

Machine learning tasks with networks

- Semi-supervised learning:
 - Given some node labels and the network structure, can we predict the labels of other nodes?
 - Given the identities of some websites which are link farms and some that are not, can we detect other link farms?

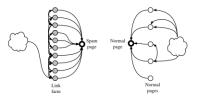
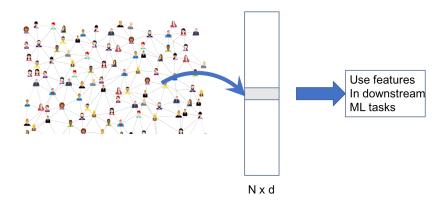


Figure 1: Schematic depiction of the neighborhood of a page participating in a link farm (left) and a normal page (right).

Figure 1: Becchetti et al, Link-Based Characterization and Detection of Web Spam, AIRWEB'06

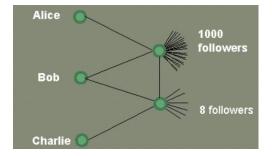
How to engineer features from graphs



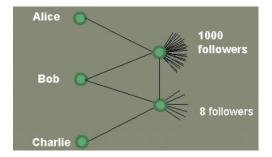
• Learn function $f : u \to \mathbb{R}^d$, where u is a node to map a network node into a d dimensional space.

- We have looked at network embeddings before.
- Spectral clustering of various types lead to network embeddings
- We have looked at statistical network models, where the nodes can be represented by latent vectors, and the goal is to learn them.

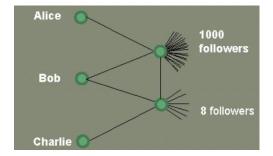
- Embed nodes such that similarity in embedding space reflects similarity in the network.
- What was the network similarity for spectral clustering?

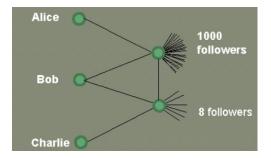


• Shortest path



• Common neighbors:
$$\sum_{i} A(x, i)A(i, y)$$





• Adamic Adar :

$$\sum_{u \in N(x) \cap N(y)} \frac{1}{\log |N(u)|}$$

• Define a mapping of nodes, or an embedding function *f*.

- Define a mapping of nodes, or an embedding function *f*.
- Define a similarity or proximity in the network, call this sim(u, v)

- Define a mapping of nodes, or an embedding function f.
- Define a similarity or proximity in the network, call this sim(u, v)
- Optimize over f such that $sim(u, v) \approx f(u)^T f(v)$

• Learn embedding that preserves random walk based similarity

- Learn embedding that preserves random walk based similarity
- "Nearby" nodes in the embedding space should be "close" in the network

- Learn embedding that preserves random walk based similarity
- "Nearby" nodes in the embedding space should be "close" in the network
- Define closeness in network by N_R(u), which is a set of nodes visited by some random walk strategy R from u

• Maximize $\max_{z} \sum_{u} \log P$ (embeddings of neighbors of $u|z_u$)

- Maximize $\max_{z} \sum_{u} \log P$ (embeddings of neighbors of $u|z_u$)
- First thing: what is neighborhood of *u*
 - Run many short random walks from u
 - Store the nodes that were visited on the walks a node can be visited multiple times

Random walks based similarity measures

• log P (embeddings of neighbors of $u|z_u$) = $\sum_{v \in N_R(u)} \log P(z_v|z_u)$

•
$$P(z_V|z_u) = \frac{\exp(z_V^T z_u)}{\sum_j \exp(z_j^T z_u)}$$

- This is a distribution over all nodes, and the hope is if v is a neighbor of u, then it is much more similar than those who are not.
- This is computationally extensive, since the computation of the denominator is O(n) for each node.
 - Can be avoided using negative sampling.

Recall BFS (breadth first) and DFS (depth first) ?

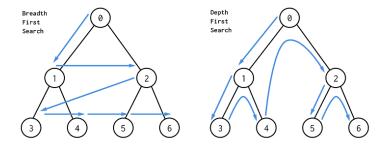


Figure 2: www.freelancinggig.com

• Biased second order random walks.

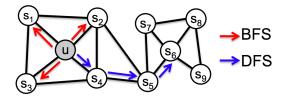


Figure 3: BFS-local traversal. DFS-global traversal. Courtesy - Grover and Leskovec 2016

- Two parameters for biased random walk:
 - p if high, we do more DFS type traversal than BFS type
 - q if high, we do more BFS type traversal than DFS type traversal

Random walk

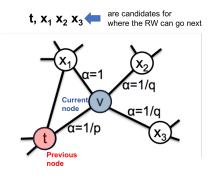


Figure 4: Courtesy - Grover and Leskovec 2016

$$P(x|v) \propto \begin{cases} 1 & x \text{ is } 1 \text{ hop from } t \\ 1/p & x = t \\ 1/q & x \text{ is } 2 \text{ hops from } t \end{cases}$$

- Simulate r random walks of length ℓ for each node
- Optimize the objective with these N_R(u) neighborhoods using Stochastic Gradient Descent.
- Can parallelize each step.

- Network built from characters in Les Miserable
- It contains 77 nodes corresponding to characters of the novel
- 254 edges connecting two characters whenever they appear in the same chapter.

Real data examples

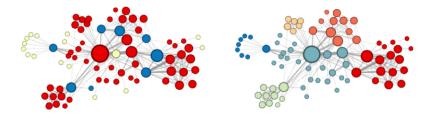


Figure 5: Left: p = 1, q = 2 - Structural similarities. Right: p = 1, q = .5 - Homophily

• Jure leskovec's lecture notes.