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Machine learning tasks with networks

• Link prediction:

• Given the network structure, can we predict missing edges?

• Useful for suggesting new friends, new products, etc.
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Machine learning tasks with networks

• Semi-supervised learning:

• Given some node labels and the network structure, can we predict

the labels of other nodes?

• Given the identities of some websites which are link farms and some

that are not, can we detect other link farms?

Figure 1: Becchetti et al, Link-Based Characterization and Detection of

Web Spam, AIRWEB’06
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How to engineer features from graphs

• Learn function f : u → Rd , where u is a node to map a network node

into a d dimensional space.
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We have seen similar ideas before

• We have looked at network embeddings before.

• Spectral clustering of various types lead to network embeddings

• We have looked at statistical network models, where the nodes can

be represented by latent vectors, and the goal is to learn them.
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Graph embedding: main idea

• Embed nodes such that similarity in embedding space reflects

similarity in the network.

• What was the network similarity for spectral clustering?
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Different network similarity measures

• Shortest path
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Different network similarity measures

• Common neighbors:
∑
i

A(x , i)A(i , y)
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Different network similarity measures

• Jaccard score:
|N(x) ∩ N(y)|
|N(x) ∪ N(y)|
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Different network similarity measures

• Adamic Adar :
∑

u∈N(x)∩N(y)

1

log |N(u)|
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Graph embedding: main idea

• Define a mapping of nodes, or an embedding function f .

• Define a similarity or proximity in the network, call this sim(u, v)

• Optimize over f such that sim(u, v) ≈ f (u)T f (v)
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Random walk based similarity measures

• Learn embedding that preserves random walk based similarity

• “Nearby” nodes in the embedding space should be “close” in the

network

• Define closeness in network by NR (u), which is a set of nodes visited

by some random walk strategy R from u
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Random walks based similarity measures

• Maximize max
z

∑
u

logP (embeddings of neighbors of u|zu)

• First thing: what is neighborhood of u

• Run many short random walks from u

• Store the nodes that were visited on the walks - a node can be

visited multiple times
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Random walks based similarity measures

• logP (embeddings of neighbors of u|zu) =
∑

v∈NR (u)

logP (zv |zu)

• P (zv |zu) =
exp(zTv zu)∑
i exp(z

T
i zu)

• This is a distribution over all nodes, and the hope is if v is a

neighbor of u, then it is much more similar than those who are not.

• This is computationally extensive, since the computation of the

denominator is O(n) for each node.

• Can be avoided using negative sampling.
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Recall BFS (breadth first) and DFS (depth first) ?

Figure 2: www.freelancinggig.com
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Random walk

• Biased second order random walks.

Figure 3: BFS-local traversal. DFS-global traversal. Courtesy - Grover

and Leskovec 2016

• Two parameters for biased random walk:

• p - if high, we do more DFS type traversal than BFS type

• q - if high, we do more BFS type traversal than DFS type traversal
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Random walk

Figure 4: Courtesy - Grover and Leskovec 2016

P(x |v) ∝


1 x is 1 hop from t

1/p x = t

1/q x is 2 hops from t
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Random walk

• Simulate r random walks of length ` for each node

• Optimize the objective with these NR (u) neighborhoods using

Stochastic Gradient Descent.

• Can parallelize each step.
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Real data examples

• Network built from characters in Les Miserable

• It contains 77 nodes corresponding to characters of the novel

• 254 edges connecting two characters whenever they appear in the

same chapter.
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Real data examples

Figure 5: Left: p = 1, q = 2 - Structural similarities. Right: p = 1, q = .5 -

Homophily
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