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Machine learning tasks with networks

e Link prediction:
e Given the network structure, can we predict missing edges?
e Useful for suggesting new friends, new products, etc.
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Machine learning tasks with networks

e Semi-supervised learning:
e Given some node labels and the network structure, can we predict
the labels of other nodes?
e Given the identities of some websites which are link farms and some

that are not, can we detect other link farms?
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Figure 1: Schematic depiction of the neighborhood
of a page participating in a link farm (left) and a
normal page (right).

Figure 1: Becchetti et al, Link-Based Characterization and Detection of
Web Spam, AIRWEB'06



How to engineer features fr raphs
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e Learn function f: u — ]Rd, where v is a node to map a network node
into a d dimensional space.



We have seen similar ideas before

e We have looked at network embeddings before.
e Spectral clustering of various types lead to network embeddings

e We have looked at statistical network models, where the nodes can
be represented by latent vectors, and the goal is to learn them.



Graph embedding: main idea

e Embed nodes such that similarity in embedding space reflects
similarity in the network.

e What was the network similarity for spectral clustering?



Different network similarity measures
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Different network similarity measures
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Different network similarity measures
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Different network similarity measures
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Graph embedding: main idea

e Define a mapping of nodes, or an embedding function f.
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Graph embedding: main idea

e Define a mapping of nodes, or an embedding function f.

e Define a similarity or proximity in the network, call this sim(u, v)
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Graph embedding: main idea

e Define a mapping of nodes, or an embedding function f.
e Define a similarity or proximity in the network, call this sim(u, v)

e Optimize over f such that sim(u,v) ~ f(u)Tf(v)
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Random walk based similarity measures

e |earn embedding that preserves random walk based similarity
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Random walk based similarity measures

e |earn embedding that preserves random walk based similarity

e “Nearby” nodes in the embedding space should be “close” in the
network
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Random walk based similarity measures

e |earn embedding that preserves random walk based similarity

e “Nearby” nodes in the embedding space should be “close” in the
network

e Define closeness in network by Ng(u), which is a set of nodes visited
by some random walk strategy R from u
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Random walks based similarity measures

e Maximize mzaxz log P (embeddings of neighbors of u|zy)
u
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Random walks based similarity measures

e Maximize mzaxz log P (embeddings of neighbors of u|zy)
u

e First thing: what is neighborhood of u

e Run many short random walks from u
e Store the nodes that were visited on the walks - a node can be
visited multiple times
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Random walks based similarity measures

e log P (embeddings of neighbors of u|zy) = Z log P (zv|zu)
veENR(u)

exp(z\;rzu)

PR S (a2

e This is a distribution over all nodes, and the hope is if v is a
neighbor of u, then it is much more similar than those who are not.

e This is computationally extensive, since the computation of the
denominator is O(n) for each node.

e Can be avoided using negative sampling.
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Recall BFS (breadth first) and DFS (depth first) ?

Figure 2: www.freelancinggig.com
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Random walk

e Biased second order random walks.

Figure 3: BFS-local traversal. DFS-global traversal. Courtesy - Grover
and Leskovec 2016

e Two parameters for biased random walk:

e p - if high, we do more DFS type traversal than BFS type
e g - if high, we do more BFS type traversal than DFS type traversal
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Random walk
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Figure 4: Courtesy - Grover and Leskovec 2016
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Random walk

e Simulate r random walks of length ¢ for each node

e Optimize the objective with these Ng(u) neighborhoods using
Stochastic Gradient Descent.

e Can parallelize each step.
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Real data examples

e Network built from characters in Les Miserable
e |t contains 77 nodes corresponding to characters of the novel

e 254 edges connecting two characters whenever they appear in the

same chapter.
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Real data examples
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Figure 5: Left: p = 1,9 = 2 - Structural similarities. Right: p=1,9=.5 -
Homophily
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