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Semi-supervised learning

e You are given a lot of unlabeled data.
e Only a few points are labeled.

e s this useful?
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Semi-supervised learning

e Two broad ways
e Label propagation:
e Graph Based algorithm
e Does not generalize to unseen data, i.e. Transductive
e Manifold regularization

e Graph Based regularization
e Does generalize to unseen data, i.e. Inductive



Semi-supervised learning

e Input n data points xq,...,xn

e Define similarity matrix S € R™*"
2 2
Sij = exp(=llxj — xj[|7/207)

e Since S is dense, often k nearest neighbor graphs are also used.
(Your homework!)



Label propagation [Zhu et al, 2003]

e Input:

e ( labeled datapoints (x1,y1), ..., (x¢, ye)
e u unlabeled datapoints x¢11,. .., Xe+u

e Predict: labels ypyq1,...,yp1,




Label propagation algorithm

e Compute P ¢ [0,1)(Fu)x(+u)
Sij

2 Sij

e Harmonic function:

QPU:

e Function value at an unlabeled node is an average of function values
at its neighbors
e Forj=0¢+1:0+u,

fF) = 7225’;(') = > Pif(i)
' ——

convex combination of values of neighbors

In other words, for the unlabeled nodes, this fixed point equation is
satisfied
flu] = PU]  f[L] = y[L]

For a vector v and set S, we denote by v[S] the subset of values in S

U and L denote the set of unlabeled and labeled points respectively.
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Closed form

Assume there are just two classes. Set y[L] € {0, 1}5 accordingly.
We have:

YL
Yu

YL
Yu

P Pry
PuL  Puu

Expanding, we get:

PuLYr +PuyuYu=Yu

Moving things around:

—1
Yu=U—=Pyy) "PuLYL

Can use a linear system solver



Label propagation - Random walk interpretation

e Think of the labeled nodes as absorbing states

e Use

[o@)
t
> PLuPuLYe
t=0

Yy =

= PuLYL + PuuPuLYL +
—— ————
Probability of reaching “1"s in one step  Probability of reaching in two steps

= Probability of reaching a label “1" in a long random walk

e Why is this useful?

e [f the labels are all reachable, a long walk must hit a “0” or a 1"

e So if Y; > 1/2, that means from i, its more likely to reach a “1”
than a “0"



Graph Laplacian interpretation

e Graph Laplacian: L =D — S, where D; => " S;; is a diagonal matrix
J
e L is positive semi-definite (we are assuming S;; > 0)

e Why?
e For any vector v,

vl = ZS,-J-(V,- —v)?
ij

e So this measures how unsmooth v is w.r.t S
e [ is also singular, why?



Label propagation algorithm

e We can also frame label propagation as
T _
argminv ' Lv s.t.v[l] =y
v

e Why?



Label propagation algorithm

e We can also frame label propagation as
T _
argminv ' Lv s.t.v[l] =y
v

e Why?
e Write v = [yL VU}



Label propagation algorithm

e We can also frame label propagation as
T _
argminv ' Lv s.t.v[l] =y
v

e Why?

o Write v = [yL VU}

e Now set the derivative to zero.
e Lv =0 such that v[L] =y,

—SuL Dyu — Suu | |wu

Di — Sut —Sw } [ﬂ} —0

e Solving:
—Sucyr + (Dyu — Suv)vu =0



Label propagation algorithm

e We can also frame label propagation as
T _
argminv ' Lv s.t.v[l] =y
v

e Why?

o Write v = [yL VU}

e Now set the derivative to zero.
e Lv =0 such that v[L] =y,

—SuL Dyu — Suu | |wu

Di — Sut —Sw } [ﬂ} —0

e Solving:
—Sucyr + (Dyu — Suv)vu =0

e rearranging: vy = (Dyu — Suu) “Suyr = (I — Puu) " Pun



Experimentally?
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Figure 3. Harmonic energy minimization on digits “1” vs. ‘2" (left) and on all 10 digits (middle) and combining voted-perceptron with
harmonic energy minimization on odd vs. even digits (right)
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Figure 4. Harmonic energy minimization on PC vs. MAC (left), baseball vs. hockey (middle), and MS-Windows vs. MAC (right)
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Manifold regularization

e Input:

e ( labeled datapoints (x1,y1), ..., (x¢, ye)
e u unlabeled datapoints x¢y1, ..., Xe4u

e Predict: labels ypyq1,...,yp4y
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Manifold regularization

e Input:

e ( labeled datapoints (x1,y1), ..., (x¢, ye)
e 1 unlabeled datapoints x¢11,. .., Xe+u

e Predict: labels ypyq1,...,yp4y
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Figure 1: Unlabeled data and prior beliefs
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Manifold regularization

e Input:

e ( labeled datapoints (x1,y1), ..., (x¢, ye)
e u unlabeled datapoints x¢y1, ..., Xe4y

e Predict: labels ypyq1,...,yp1y
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Manifold regularization

e Input:
e ( labeled datapoints (x1,y1), ..., (x¢, ye)
e u unlabeled datapoints x¢y1, ..., Xe4y

e Predict: labels ypyq1,...,yp1y

e Before the constraint was v[L] = y;, now instead we will use a loss
function and learn a classifier on the labeled data

J4
minZloss(y,-7 WTX,-) +A R(w)
w ) ~—~—
Z regularization

loss
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Manifold regularization

e Input:
e ( labeled datapoints (x1,y1), ..., (x¢, ye)
e u unlabeled datapoints x¢y1, ..., Xe4y

e Predict: labels ypyq1,...,yp1y

e Before the constraint was v[L] = y;, now instead we will use a loss
function and learn a classifier on the labeled data

J4
minZloss(y,-7 WTX,-) +A R(w)
w ) ~—~—
Z regularization

loss

e How about the unlabeled data?
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Manifold regularization: Belkin et al 2006

‘
min 3 loss(y;, w' x)+A  R(w)  +B(Xw)T L(Xw)
w ] ——
=z regularization

loss

e Assume a linear predictor w!x
e Idea: close/similar points have similar predicted labels.
e LapSVM:

mlnz Fx)++A  IFI%  +BFTLF
——

regularization
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Transductive SVM: Joachims et al 1999

l

n
. 2
min Y (L-yif )+ +C Y0 A—yifGi))++ 4 |Ifllk
WoYp41sYl4u -1 i—t11 \\ﬂ/. ]
regularization

e lteratively solves SVM quadratic programs
e Switches labels to improve objective function

e Suffers from local optima, inherently combinatorial problem
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Transductive SVM VS LapSVM

SVM Transductive SVM Laplacian SVM
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