SDS 385: Stat Models for Big Data
 Lecture 10a: Semisupervised learning

Purnamrita Sarkar
Department of Statistics and Data Science
The University of Texas at Austin
https://psarkar.github.io/teaching

Semi-supervised learning

- You are given a lot of unlabeled data.
- Only a few points are labeled.
- Is this useful?

Semi-supervised learning

- Two broad ways
- Label propagation:
- Graph Based algorithm
- Does not generalize to unseen data, i.e. Transductive
- Manifold regularization
- Graph Based regularization
- Does generalize to unseen data, i.e. Inductive

Semi-supervised learning

- Input n data points x_{1}, \ldots, x_{n}
- Define similarity matrix $S \in \mathbb{R}^{n \times n}$

$$
S_{i j}=\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma^{2}\right)
$$

- Since S is dense, often k nearest neighbor graphs are also used. (Your homework!)

Label propagation [Zhu et al, 2003]

- Input:
- ℓ labeled datapoints $\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)$
- u unlabeled datapoints $x_{\ell+1}, \ldots, x_{\ell+u}$
- Predict: labels $y_{\ell+1}, \ldots, y_{\ell+u}$

Label propagation algorithm

- Compute $P \in[0,1]^{(\ell+u) \times(\ell+u)}$
- $P_{i j}=\frac{S_{i j}}{\sum_{j} S_{i j}}$
- Harmonic function:
- Function value at an unlabeled node is an average of function values at its neighbors
- For $j=\ell+1: \ell+u$,

$$
f(j)=\frac{\sum_{i} S_{j i} f(i)}{\sum_{i} S_{j i}}=\underbrace{\sum_{i} P_{j i} f(i)}_{\text {convex combination of values of neighbors }}
$$

- In other words, for the unlabeled nodes, this fixed point equation is satisfied

$$
f[U]=P f[U] \quad f[L]=y[L]
$$

- For a vector v and set S, we denote by $v[S]$ the subset of values in S
- U and L denote the set of unlabeled and labeled points respectively.

Closed form

- Assume there are just two classes. Set $y[L] \in\{0,1\}^{\ell}$ accordingly.
- We have:

$$
\left[\begin{array}{ll}
P_{L L} & P_{L U} \\
P_{U L} & P_{U U}
\end{array}\right]\left[\begin{array}{l}
Y_{L} \\
Y_{U}
\end{array}\right]=\left[\begin{array}{l}
Y_{L} \\
Y_{U}
\end{array}\right]
$$

- Expanding, we get:

$$
P_{U L} Y_{L}+P_{U U} Y_{U}=Y_{U}
$$

- Moving things around:

$$
Y_{U}=\left(I-P_{U U}\right)^{-1} P_{U L} Y_{L}
$$

- Can use a linear system solver

Label propagation - Random walk interpretation

- Think of the labeled nodes as absorbing states
- Use

$$
\begin{aligned}
Y_{U} & =\sum_{t=0}^{\infty} P_{U U}^{t} P_{U L} Y_{L} \\
& =\underbrace{P_{U L} Y_{L}}_{\text {Probability of reaching "1"s in one step }}+\underbrace{P_{U U} P_{U L} Y_{L}}_{\text {Probability of reaching in two steps }} \\
& =\text { Probability of reaching a label "1" in a long random walk }
\end{aligned}
$$

- Why is this useful?
- If the labels are all reachable, a long walk must hit a " 0 " or a " 1 "
- So if $Y_{i}>1 / 2$, that means from i, its more likely to reach a " 1 " than a " 0 "

Graph Laplacian interpretation

- Graph Laplacian: $L=D-S$, where $D_{i i}=\sum_{j} S_{i j}$ is a diagonal matrix
- L is positive semi-definite (we are assuming $S_{i j}>0$)
- Why?
- For any vector v,

$$
v^{\top} L v=\sum_{i j} S_{i j}\left(v_{i}-v_{j}\right)^{2}
$$

- So this measures how unsmooth v is w.r.t S
- L is also singular, why?

Label propagation algorithm

- We can also frame label propagation as

$$
\arg \min _{v} v^{T} L v \quad \text { s.t. } v[L]=y_{L}
$$

- Why?

Label propagation algorithm

- We can also frame label propagation as

$$
\arg \min _{v} v^{T} L v \quad \text { s.t. } v[L]=y_{L}
$$

- Why?
- Write $v=\left[\begin{array}{ll}y_{L} & v_{U}\end{array}\right]$

Label propagation algorithm

- We can also frame label propagation as

$$
\arg \min _{v} v^{\top} L v \quad \text { s.t. } v[L]=y_{L}
$$

- Why?
- Write $v=\left[\begin{array}{ll}y_{L} & v_{U}\end{array}\right]$
- Now set the derivative to zero.
- $L v=0$ such that $v[L]=y L$

$$
\left[\begin{array}{cc}
D_{L L}-S_{L L} & -S_{L U} \\
-S_{U L} & D_{U U}-S_{U U}
\end{array}\right]\left[\begin{array}{l}
y_{L} \\
v_{U}
\end{array}\right]=0
$$

- Solving:

$$
-S_{u L y_{L}}+\left(D_{U u}-S_{U u}\right) v_{U}=0
$$

Label propagation algorithm

- We can also frame label propagation as

$$
\arg \min _{v} v^{T} L v \quad \text { s.t. } v[L]=y_{L}
$$

- Why?
- Write $v=\left[\begin{array}{ll}y_{L} & v_{U}\end{array}\right]$
- Now set the derivative to zero.
- $L v=0$ such that $v[L]=y_{L}$

$$
\left[\begin{array}{cc}
D_{L L}-S_{L L} & -S_{L U} \\
-S_{U L} & D_{U U}-S_{U U}
\end{array}\right]\left[\begin{array}{c}
y_{L} \\
v_{U}
\end{array}\right]=0
$$

- Solving:

$$
-S_{U L} y_{L}+\left(D_{U U}-S_{U U}\right) v_{U}=0
$$

- rearranging: $v u=\left(D_{u u}-S_{u u}\right)^{-1} S_{u L y_{L}}=\left(I-P_{u u}\right)^{-1} P_{u L} y_{L}$

Experimentally?

Figure 3. Harmonic energy minimization on digits "1" vs. '2" (left) and on all 10 digits (middle) and combining voted-perceptron with harmonic energy minimization on odd vs. even digits (right)

Figure 4. Harmonic energy minimization on PC vs. MAC (left), baseball vs. hockey (middle), and MS-Windows vs. MAC (right)

Manifold regularization

- Input:
- ℓ labeled datapoints $\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)$
- u unlabeled datapoints $x_{\ell+1}, \ldots, x_{\ell+u}$
- Predict: labels $y_{\ell+1}, \ldots, y_{\ell+u}$

Manifold regularization

- Input:
- ℓ labeled datapoints $\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)$
- u unlabeled datapoints $x_{\ell+1}, \ldots, x_{\ell+u}$
- Predict: labels $y_{\ell+1}, \ldots, y_{\ell+u}$

Figure 1: Unlabeled data and prior beliefs

Manifold regularization

- Input:
- ℓ labeled datapoints $\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)$
- u unlabeled datapoints $x_{\ell+1}, \ldots, x_{\ell+u}$
- Predict: labels $y_{\ell+1}, \ldots, y_{\ell+u}$

Manifold regularization

- Input:
- ℓ labeled datapoints $\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)$
- u unlabeled datapoints $x_{\ell+1}, \ldots, x_{\ell+u}$
- Predict: labels $y_{\ell+1}, \ldots, y_{\ell+u}$
- Before the constraint was $v[L]=y_{L}$, now instead we will use a loss function and learn a classifier on the labeled data

$$
\min _{w} \underbrace{\sum_{i=1}^{\ell} \operatorname{loss}\left(y_{i}, w^{T} x_{i}\right)}_{\text {loss }}+\lambda \underbrace{R(w)}_{\text {regularization }}
$$

Manifold regularization

- Input:
- ℓ labeled datapoints $\left(x_{1}, y_{1}\right), \ldots,\left(x_{\ell}, y_{\ell}\right)$
- u unlabeled datapoints $x_{\ell+1}, \ldots, x_{\ell+u}$
- Predict: labels $y_{\ell+1}, \ldots, y_{\ell+u}$
- Before the constraint was $v[L]=y_{L}$, now instead we will use a loss function and learn a classifier on the labeled data

$$
\min _{w} \underbrace{\sum_{i=1}^{\ell} \operatorname{loss}\left(y_{i}, w^{T} x_{i}\right)}_{\text {loss }}+\lambda \underbrace{R(w)}_{\text {regularization }}
$$

- How about the unlabeled data?

Manifold regularization: Belkin et al 2006

$$
\min _{w} \underbrace{\sum_{i=1}^{\ell} \operatorname{loss}\left(y_{i}, w^{T} x_{i}\right)}_{\text {loss }}+\lambda \underbrace{R(w)}_{\text {regularization }}+\beta(X w)^{T} L(X w)
$$

- Assume a linear predictor $w^{T} x$
- Idea: close/similar points have similar predicted labels.
- LapSVM:

$$
\min _{W} \sum_{i=1}^{\ell}\left(1-y_{i} f\left(x_{i}\right)\right)_{+}+\lambda \underbrace{\|f\|_{K}^{2}}_{\text {regularization }}+\beta f^{T} L f
$$

Transductive SVM: Joachims et al 1999

$$
\min _{w, y_{\ell+1}, \ldots, y_{\ell+u}} \sum_{i=1}^{\ell}\left(1-y_{i} f\left(x_{i}\right)\right)_{+}+C^{\prime} \sum_{i=\ell+1}^{n}\left(1-y_{i} f\left(x_{i}\right)\right)_{+}+\lambda \underbrace{\|f\|_{K}^{2}}_{\text {regularization }}
$$

- Iteratively solves SVM quadratic programs
- Switches labels to improve objective function
- Suffers from local optima, inherently combinatorial problem

Transductive SVM VS LapSVM

Acknowledgments

- Cho-Jui Hsieh's lecture notes from UC Davis
- Zhu et al's paper in ICML "Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions"
- Ng et al's paper on ranking Stability "Link Analysis, Eigenvectors and Stability", IJCAI 2001
- Belkin, Niyogi and Sindhwani's paper "Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples" in JMLR 2006
- My old talk on Random walks.

