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Semi-supervised learning

• You are given a lot of unlabeled data.

• Only a few points are labeled.

• Is this useful?
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Semi-supervised learning

• Two broad ways

• Label propagation:

• Graph Based algorithm

• Does not generalize to unseen data, i.e. Transductive

• Manifold regularization

• Graph Based regularization

• Does generalize to unseen data, i.e. Inductive
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Semi-supervised learning

• Input n data points x1, . . . , xn

• Define similarity matrix S ∈ Rn×n

Sij = exp(−‖xi − xj‖
2/2σ2)

• Since S is dense, often k nearest neighbor graphs are also used.

(Your homework!)
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Label propagation [Zhu et al, 2003]

• Input:

• ` labeled datapoints (x1, y1), . . . , (x`, y`)

• u unlabeled datapoints x`+1, . . . , x`+u

• Predict: labels y`+1, . . . , y`+u
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Label propagation algorithm

• Compute P ∈ [0, 1](`+u)×(`+u)

• Pij =
Sij∑
j Sij

• Harmonic function:

• Function value at an unlabeled node is an average of function values

at its neighbors

• For j = `+ 1 : `+ u,

f (j) =

∑
i Sji f (i)∑

i Sji
=

∑
i

Pji f (i)︸ ︷︷ ︸
convex combination of values of neighbors

• In other words, for the unlabeled nodes, this fixed point equation is

satisfied

f [U] = Pf [U] f [L] = y [L]

• For a vector v and set S , we denote by v [S ] the subset of values in S

• U and L denote the set of unlabeled and labeled points respectively.
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Closed form

• Assume there are just two classes. Set y [L] ∈ {0, 1}` accordingly.

• We have: [
PLL PLU
PUL PUU

][
YL

YU

]
=

[
YL

YU

]
• Expanding, we get:

PULYL + PUUYU = YU

• Moving things around:

YU = (I − PUU )−1PULYL

• Can use a linear system solver
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Label propagation - Random walk interpretation

• Think of the labeled nodes as absorbing states

• Use

YU =
∞∑
t=0

Pt
UUPULYL

= PULYL︸ ︷︷ ︸
Probability of reaching “1”s in one step

+ PUUPULYL︸ ︷︷ ︸
Probability of reaching in two steps

+ . . .

= Probability of reaching a label “1” in a long random walk

• Why is this useful?

• If the labels are all reachable, a long walk must hit a “0” or a “1”

• So if Yi > 1/2, that means from i , its more likely to reach a “1”

than a “0”
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Graph Laplacian interpretation

• Graph Laplacian: L = D − S, where Dii =
∑
j

Sij is a diagonal matrix

• L is positive semi-definite (we are assuming Sij > 0)

• Why?

• For any vector v ,

vTLv =
∑
ij

Sij(vi − vj)
2

• So this measures how unsmooth v is w.r.t S

• L is also singular, why?
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Label propagation algorithm

• We can also frame label propagation as

arg min
v

vT Lv s.t.v [L] = yL

• Why?

• Write v =
[
yL vU

]
• Now set the derivative to zero.

• Lv = 0 such that v [L] = yL

• [
DLL − SLL −SLU

−SUL DUU − SUU

][
yL

vU

]
= 0

• Solving:

−SULyL + (DUU − SUU)vU = 0

• rearranging: vU = (DUU − SUU)−1SULyL = (I − PUU)−1PULyL
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Experimentally?
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Manifold regularization

• Input:

• ` labeled datapoints (x1, y1), . . . , (x`, y`)

• u unlabeled datapoints x`+1, . . . , x`+u

• Predict: labels y`+1, . . . , y`+u
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Manifold regularization

• Input:

• ` labeled datapoints (x1, y1), . . . , (x`, y`)

• u unlabeled datapoints x`+1, . . . , x`+u

• Predict: labels y`+1, . . . , y`+u

• Before the constraint was v [L] = yL, now instead we will use a loss

function and learn a classifier on the labeled data

min
w

∑̀
i=1

loss(yi ,w
T xi )︸ ︷︷ ︸

loss

+λ R(w)︸ ︷︷ ︸
regularization

• How about the unlabeled data?
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Manifold regularization: Belkin et al 2006

min
w

∑̀
i=1

loss(yi ,w
T xi )︸ ︷︷ ︸

loss

+λ R(w)︸ ︷︷ ︸
regularization

+β(Xw)T L(Xw)

• Assume a linear predictor wT x

• Idea: close/similar points have similar predicted labels.

• LapSVM:

min
w

∑̀
i=1

(1− yi f (xi ))+ + λ ‖f ‖2K︸ ︷︷ ︸
regularization

+βf T Lf
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Transductive SVM: Joachims et al 1999

min
w ,y`+1,...,y`+u

∑̀
i=1

(1− yi f (xi ))+ + C ′
n∑

i=`+1

(1− yi f (xi ))+ + λ ‖f ‖2K︸ ︷︷ ︸
regularization

• Iteratively solves SVM quadratic programs

• Switches labels to improve objective function

• Suffers from local optima, inherently combinatorial problem
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Transductive SVM VS LapSVM
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