
Overlapping Clustering Models, and One (class) SVM
to Bind Them All

Xueyu Mao, Purnamrita Sarkar, Deepayan Chakrabarti
The University of Texas at Austin

xmao@cs.utexas.edu, purna.sarkar@austin.utexas.edu, deepay@utexas.edu

Abstract

People belong to multiple communities, words belong to multiple topics, and books
cover multiple genres; overlapping clusters are commonplace. Many existing over-
lapping clustering methods model each person (or word, or book) as a non-negative
weighted combination of “exemplars” who belong solely to one community, with
some small noise. Geometrically, each person is a point on a cone whose corners
are these exemplars. This basic form encompasses the widely used Mixed Member-
ship Stochastic Blockmodel of networks [1] and its degree-corrected variants [16],
as well as topic models such as LDA [9]. We show that a simple one-class SVM
yields provably consistent parameter inference for all such models, and scales to
large datasets. Experimental results on several simulated and real datasets show
our algorithm (called SVM-cone) is both accurate and scalable.

1 Introduction

Clustering has many real-world applications: market segmentation, product recommendation, doc-
ument clustering, finding protein complexes in gene networks, among others. The simplest form
of a clustering model assumes that every record or entity belongs to exactly one cluster. More
general forms allow for overlapping clusters, where each entity may belong to different clusters or
communities to different degrees. For example, George Orwell’s 1984 belongs to both the dystopian
fiction and political fiction genres, and Pink Floyd’s music is both progressive and psychedelic. In
this paper, we show that many existing overlapping clustering models can be written in a general
form, whose parameters can then be inferred using a one-class SVM.

In many clustering problems, overlapping or otherwise, we have access to a data matrix Ẑ ∈ Rn×m,
which is a noisy version of an ideal matrix Z, i.e. Ẑ = Z + R where the norm of the rows of
R is small. Also, Z = GZP , where ZP are ideal “exemplars” of the various communities, and
G ∈ Rn×K≥0 gives the community memberships of each entity. We will now give some examples.

Consider the Stochastic Blockmodel (SBM) [13] for networks. In this model, each node belongs to
one of K communities, and the probability Pij of an edge between nodes i and j is a function of their
respective communities. Recent results [22] show that the eigenvectors V̂ of the adjacency matrix
concentrate row-wise around the eigenvectors V of P. The matrix V is also blockwise constant,
mapping all nodes in one cluster to one point [28]. Hence, V̂ = GVP + R, where G ∈ {0, 1}n×K
is a binary membership matrix where each row sums to one. The Mixed Membership Stochastic
Blockmodel (MMSB) [1] relaxes this by allowing the entries of G to be in [0, 1]. Since the rows of G
sum to one, the ideal matrix Z arranges points in a simplex. The corners of this simplex represent the
“pure” nodes, i.e. nodes belonging to exactly one community. Most algorithms first find the corners,
and then estimate model parameters via regression [21, 22, 16, 24, 29]. Other notable methods
include tensor based approaches [14, 2], Bayesian inference [12], etc. Related models and inference
methods for overlapping networks have been presented in [25, 18, 27, 20], etc.
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(a) Simplex methods can fail (b) Normalized points

(c) Supporting hyperplane

Figure 1: (a) Simplex-based corner-finding methods require points on a simplex, with uniformly
small errors. Projecting points to a simplex with normal vector q works well, but a very similar q′
does not. Some points (such as A©) get projected to far-off points, amplifying errors in their positions.
(b) Instead, we normalize points to the unit sphere, and (c) find corners from the support vectors of a
one-class SVM.

The MMSB model does not allow for degree heterogeneity, which can be achieved via the degree-
corrected MMSB model (DCMMSB) [16]. In DCMMSB, each node has an extra degree parameter,
with a high parameter value leading to more edges for that node. Now, G is non-negative, but its
rows do not sum to one. Thus the points lie inside a cone, and the pure nodes lie on the corner rays of
this cone. Other network models also give rise to such cones [33, 18].

Existing algorithms for degree corrected overlapping models use a range of different techniques.
OCCAM [33] uses a k-medians step on the regularized eigenvectors of the adjacency matrix to get
the corners. While the algorithm is computationally efficient, a key assumption is that the k-medians
loss function attains its minimum at the locations of the pure nodes and there is a curvature around
this minimum. This condition is typically hard to check. In [16], the authors show an interesting
result that the second to K eigenvectors, element-wise divided by the first eigenvector entries form
a simplex. The authors provide an algorithm for finding this simplex with K corners in K − 1
dimensions. The algorithm requires a combinatorial search step, which is prohibitive for large K.

Topic models [9] are another example of overlapping clustering models. Here the documents can be
generated from a mixture of topics, which are the analog of communities in networks. The normalized
word co-occurrence matrix forms a simplex structure, with the corners representing anchor words, i.e.
words that belong to exactly one topic. While there are many existing inference methods, the ones
that provide consistency guarantees are typically based on analyzing tensors or finding corners in
simplexes [4, 19, 11, 3, 15, 7, 6, 8].

In this paper, we provide an overarching framework which incorporates all the above problems, from
Mixed membership models (with or without degree correction) to topic models. As discussed before,
in all the above models, the ideal data matrix lies inside a cone (a simplex is a special type of a cone).
The goal is to infer G, which depends on finding the correct corner rays.

Let us illustrate why seemingly obvious methods fail to obtain the corner rays. The simplest idea
would be to generate a random plane (the “simplex”), and project points to the intersection of the line
joining these points to this random plane as shown in Figure 1a. Corners of this simplex correspond
to the corner rays. However, extending the idea to the sample or empirical cone is difficult, because if
the simplex is not good, some points can get projected to arbitrarily far points, which will amplify
their error. As Figure 1a shows, the set of good simplexes may be quite limited, and finding a good
simplex is difficult.

We will illustrate our idea with the “ideal cone.” First, we row-normalize the ideal data matrix to have
unit `2 norm (similar to Ng et al. [23], Qin and Rohe [26]). This projects all points inside the cone to
the surface of the sphere, with the points on the corner rays being projected to the corners (Figure 1b).

Then, we show a rather fascinating result, namely, for all the above models, the corners can be
obtained via the support vectors of a one class SVM [30], where all normalized points are in the
positive class, and the origin is in the negative class (Figure 1c). Observe that a hyperplane through
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the corners separates all the points from the origin. We also show that if the row-wise error of R is
small, the SVM approach can be used to infer G from empirical cones. Finally, we show that since
the row-wise error of R is indeed small for different degree-corrected overlapping network models
and topic models, we can use our algorithm to infer the parameters consistently. We provide error
bounds for parameter estimates at the per-node and per-word level, in contrast to typical bounds for
the entire parameter matrix. We conclude with experimental results on simulated and real datasets.

2 Proposed work

Consider a population matrix P of the form P = ρΓΘBΘTΓ, with Γ ∈ Rn×n>0 being a positive
diagonal matrix, Θ ∈ Rn×K≥0 a community-membership matrix, and B ∈ RK×K≥0 a cross-community
connection matrix. We will make the following assumptions which are common in the literature:
Assumption 2.1. (a) Pure nodes: Each community has at least one “pure” node, which belongs
solely to that community. (b) Non-zero rows: No row of Θ is identically 0. (c) B is full rank.

The form of the population matrix P, alongside Assumption 2.1, induces a conic structure on the
rows of the eigenvectors of P.
Lemma 2.1. Let there be K communities (rank(P) = K), and let I be indices of K pure nodes, one
from each community. Let P = VEVT be the top-K eigen-decomposition of P, where columns of
V ∈ Rn×K are theK principal eigenvectors and E ∈ RK×K is a diagonal matrix of theK principal
eigenvalues. Then, V = ΓΘΓ−1

P VP , where VP = V(I, :) is full rank and ΓP = Γ(I, I).

Since (ΓΘΓ−1
P )ij ≥ 0 for all (i, j), the rows of V fall within a cone with corners VP . This suggests

the following idealized problem:
Problem 1 (Ideal cone problem). We are given a matrix Z ∈ Rn×m such that Z = MYP , where
M ∈ Rn×K≥0 , no row of M is 0, and YP ∈ RK×m corresponds to K (unknown) rows of Z, each
scaled to unit `2 norm. Infer M from Z.

The rows of YP are unit vectors representing the corner rays of the cone. Each row of Z is constructed
from a non-negative weighted combination of these unit vectors, with the weights being given by the
corresponding rows of M. Rows of Z that lie on some corner correspond to rows of M that have
zero in all but one component. Observe that M is invariant to the choice of K corner rows of Z used
to construct YP .

Now consider solving the ideal cone problem with the eigenvector matrix, i.e., Z = V. From
Lemma 2.1, the corner rows correspond to the pure nodes. Choosing one such row from each corner
gives us a set of pure node indices I . Hence, M = ΓΘΓ−1

P N−1
P , where N is a diagonal matrix with

Nii = 1/‖eTi Z‖ and NP = N(I, :). We also have the identity ρΓPBΓP = VPEVT
P . Coupled

with model-specific identifiability conditions (details are provided in the supplementary material),
these can be used to infer Θ and ρB (Γ are typically considered nuisance parameters).

In practice, we only have an observation matrix A that is stochastically generated from the population
matrix P. Hence, we must actually solve:
Problem 2 (Empirical cone problem). We are given a matrix Ẑ ∈ Rn×m such that
maxi∈[n] ‖eTi (Y− Ŷ)‖2 ≤ ε, where Y = NZ is the row-normalized version of Z, and Ŷ is con-
structed similarly from Ẑ. Again, Z = MYP , where M ≥ 0, no row of M is 0, and YP = Y(I, :)
corresponds to K (unknown) rows of Y with indices I. Infer M from Ẑ.

We will first present the solution to the ideal cone problem. We will then show that the same algorithm
with some post-processing solves the empirical cone problem up to O(ε) error. Finally, we apply our
algorithm to infer parameters for a variety of models, and present error bounds for each.

Notation: We shall refer to the ith row of Z as zTi expressed using a column vector, i.e., zi = ZTei.
The same pattern will be used for rowsmT

i of M, and other matrices as well.

2.1 The Ideal Cone Problem

Observe that given the corner indices I (i.e., given YP ), finding M such that Z = MYP is a simple
regression problem. Thus, the only difficulty is in finding the corner indices.
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Our key insight is that under certain conditions, the ideal cone problem can be solved easily by
a one-class SVM applied to the rows of Y. Figure 1 plots the normalized rows yi of Y for an
example cone. Observe that a hyperplane through the corners separates all the points from the origin.
This suggests that the normalized corners are the support vectors found by a one-class SVM:

maximize b s.t. wTyi ≥ b (for i = 1, . . . , n) and ‖w‖2 ≤ 1. (1)

We show next that this intuition is correct. Define the following condition.

Condition 1. The matrix YP satisfies (YPYT
P )−11 > 0.

Theorem 2.2. Each support vector selected by the one-class SVM (Eq. 1) is a corner of Z. Also, if
Condition 1 holds, there is at least one support vector for every corner.

Thus, under Condition 1, we can get all the corners from the support vectors, and then find M via
regression of Z on YP . Condition 1 is always satisfied for our problem setting, as shown next.

Theorem 2.3. Let P be a population matrix satisfying Assumption 2.1. Let Z = V, where V is the
rank-K eigenvector matrix. Let Y = NZ as defined above. Then, Condition 1 is true.

Thus, the ideal cone problem is easily solved by a one-class SVM. Next, we show that the same
method suffices for the empirical cone problem too.

2.2 The Empirical Cone Problem

Now, instead of the normalized eigenvector rows Y, we are given the empirical matrix Ŷ with rows
ẑTi /‖ẑi‖, where maxi ‖eTi (Ŷ−Y)‖ ≤ ε. Once again, we focus on finding the corner indices, using
which M can be inferred by regression. We will show that running a one-class SVM on the rows of
Ŷ yields “near-corners,” after some post-processing. We will need a stronger form of Condition 1:

Condition 2. The matrix YP satisfies (YPYT
P )−11 ≥ η1 for some constant η > 0.

It is easy to show that the solution (w, b) of the population SVM under Condition 1 is given by

w = b−1 ·YT
Pβ b =

(
1T (YPYT

P )−11
)−1/2

β = (YPYT
P )−11

1T (YPYT
P )−11

. (2)

Thus, Condition 1 implies that w is a convex combination of the corners, while Condition 2 addition-
ally requires a minimum contribution from each corner.

Lemma 2.4 (SVM solution is nearly ideal). Let (ŵ, b̂) be the solution for the one-class SVM (Eq. 1)
applied to the rows of Ŷ. Under Condition 2, we have |b̂ − b| ≤ ε and ‖ŵ − w‖ ≤ ζε, for
ζ = 4

ηb2
√
λK(YP YT

P
)
≤ 4K

η(λK(YP YT
P

))1.5 .

Unlike the ideal cone scenario, the rows ŶP corresponding to the corners need not be support vectors
for the empirical cone. However, they are not far off.

Lemma 2.5 (Corners are nearly support vectors). The corners of the population cone are close to
the supporting hyperplane: b̂1 ≤ ŶP ŵ ≤ b̂1 + (ζ + 2)ε1.

This suggests that we should consider all points that are up to (ζ + 2)ε away from the supporting
hyperplane when searching for corners. The next Lemma shows that each such point is a “near-
corner.”

Recall that each row ŷTi is a noisy version of a population row yTi = mT
i YP /‖mT

i YP ‖, which
can be rewritten as a scaled convex combination of the normalized corners: yTi = riφ

T
i YP , where

φTi 1 = 1. Specifically, ri = mT
i 1

‖mT
i

YP ‖
and φi = mi

mT
i

1 . For a corner, ri = 1 and φi = ej for some j.
We now show that every point i that is close to the supporting hyperplane is nearly a corner of the
ideal cone.

Lemma 2.6 (Points close to support vectors are near-corners). If ŵT ŷi ≤ b̂ + (ζ + 2)ε for some
point i ∈ [n], then 1 ≤ ri ≤ 1 + (ζ+4)ε

b−ε and φij ≥ 1− 2ζε
bλK(YP YT

P
) for some j ∈ [K].
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Consider the set of points Sc = {i | ŵT ŷi ≤ b̂ + (ζ + 2)ε} that are close to the supporting
hyperplane. Lemmas 2.5 and 2.6 show that Sc contains all corners, and possibly other points that
are all near-corners. This suggests that we can cluster the vectors {ŷi | i ∈ S} into K clusters, each
corresponding to one corner and possibly extra near-corners close to that corner. Randomly selecting
one point from each cluster gives us the set of inferred corners.
Lemma 2.7 (Each corner has its own cluster). There exist exactly K clusters in Sc, as long as
ε ≤ cε η(λK(YP YT

P ))3

K1.5
√
κ(YP YT

P
)
, for some global constant cε.

Let C be the indices of the near-corners picked by this clustering step. Since Z = MYP , this
suggests M can be obtained via regression: M ≈ ẐŶT

C(ŶCŶT
C)−1Π, where ŶC := Ŷ(C, :) and

Π is a permutation matrix that matches the ordering of ideal corners and the empirical near-corners.
Theorem 2.8. If Condition 2 and the condition on ε in Lemma 2.7 holds, then for any i ∈ [n],
‖eTi (M− ẐŶT

C(ŶCŶT
C)−1Π)‖ ≤ cMκ(YP YT

P )‖eT
i Z‖Kζ

(λK(YP YT
P

))2.5 ε, where cM is a global constant, and κ(.)
is the ratio of the largest and smallest nonzero singular values of a matrix.

Algorithm 1 shows all the steps of our method (SVM-cone). The algorithm requires an estimate of
δ := (ζ + 2)ε, and returns the inferred M and near-corners C. When the row-wise error bound ε is
unknown, we can start with δ = 0 and incrementally increase it until K distinct clusters are found.

Algorithm 1 SVM-cone

Input: Ẑ ∈ Rn×m, number of corners K, estimated distance of corners from hyperplane δ
Output: Estimated conic combination matrix M̂ and near-corner set C

1: Normalize rows of Ẑ by `2 norm to get Ŷ with rows ŷTi
2: Run one-class SVM on ŷi to get the normal ŵ and distance b̂ of the supporting hyperplane
3: Cluster points {ŷi | ŵT ŷi ≤ b̂+ δ} that are close to the hyperplane into K clusters
4: Pick one point from each cluster to get near-corner set C
5: M̂ = ẐŶT

C(ŶCŶT
C)−1

3 Applications

Many network models and topic models have population matrices of the form P = ρΓΘBΘTΓ. We
have already shown that in such cases, the eigenvector matrix V forms an ideal cone (Lemma 2.1),
and that Condition 1 holds. It is easy to see that the same holds for VVT as well. This suggests that
SVM-cone can be applied to the matrix V̂V̂T , where V̂ is the empirical top-K eigenvector matrix.
We shall show that this yields per-node error bounds in estimating community memberships and
per-word error bounds for word-topic distributions.

3.1 Network models

Define a “DCMMSB-type” model as a model with population matrix P = ρΓΘBΘTΓ and an
empirical adjacency matrix A with Aji = Aij ∼ Bernoulli(Pij) for all i > j. We will use ψ to
denote a model specific number which is 1 for DCMMSB and

√
K for OCCAM [33] (where the rows

of Θ have unit `2 norm). Let vi = VTei, v̂i = V̂Tei, yi = Vvi/‖Vvi‖, and ŷi = V̂v̂i/‖V̂v̂i‖.
Theorem 3.1 (Small row-wise error in Network Models). Consider a DCMMSB-type model

with θi ∼ Dirichlet(α), and α0 := αT1. If ν := α0

αmin
≤

min(
√

n
27 logn , nρ)

2(1 + α0) ,

λ∗(B)
ν
≥ 8(1 + α0)(logn)ξ

√
nρ

for some constant ξ > 1, κ(ΘTΓ2Θ) = Θ(1), and α0 = O(1),

then

ε = max
i
‖yi − ŷi‖ = Õ

(
ψγmax min{K2, (κ(P))2}K0.5ν(1 + α0)

γ3
minλ

∗(B)√nρ

)
with probability at least 1−O(Kn−3). Here λ∗(B) is the smallest singular value of B.
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Similar results for the non-Dirichlet case follow easily as long as nρ = Ω((logn)2ξ), λK(P) =
Ω(√nρ(logn)ξ), and maxi ‖V(:, i)‖ = O(√ρ) with high probability. This shows that the rows of
V̂V̂T are close to those of VVT , and the latter forms an ideal cone satisfying Condition 1. Hence,
the conic combination for each node can be recovered by Algorithm 1 applied to V̂V̂T . In fact, we
can run the algorithm on V̂ itself; the output depends only on the SVM dual variables β (Eq. 2),
which are the same whether the input is V̂ or V̂V̂T . The output is the same conic combination matrix
M̂ and the same set C of nearly-pure nodes.

For identifiability of Θ, we need another condition. We will assume that
∑

Γii = n and all diagonal
entries of B are equal (details are provided in the supplementary material). The next theorem
shows that SVM-cone can be used to consistently infer the parameters of DCMMSB as well as
OCCAM [33].

Theorem 3.2 (Consistent inference of community memberships for each node). Consider DCMMSB-
type models where the conditions of Theorem 3.1 are satisfied and κ(ΘTΓ2Θ) = Θ(1). Let D̂
be a diagonal matrix with entries D̂ii =

√
eTi ŶCV̂ÊV̂T ŶT

Cei. Let Θ̂ = F̂−1M̂D̂, where F̂
is a diagonal matrix with entries F̂ii = ‖eTi M̂D̂‖1 (for DCMMSB) and F̂ii = ‖eTi M̂D̂‖2 (for
OCCAM [33]). Then there exists a permutation matrix Π such that

‖eTi (Θ− Θ̂Π)‖ = Õ

(
ψ2γ2

maxK
2 min{K2, (κ(P))2}n3/2

γ2
minηλ

∗(B)λ2
K(ΘTΓ2Θ)√ρ

)
.

Remark 3.1. The error bound is small when the clusters are well separated (large λ∗(B)), the network
is dense (large ρ), there are few blocks (small K), and the membership vectors Θ are drawn from a
balanced Dirichlet distribution (small ν, and hence small κ(P )), which leads to balanced block sizes.

Remark 3.2. For DCMMSB-type models, η ≥ (mini γi)2 mini(eT
i ΘT 1)

λ1(ΘT Γ2Θ) . Also, under the conditions of

Theorem 3.1, η ≥ γ2
min

3νγ2
max

with high probability. Proofs are in the supplementary material.

Observe that these are per-node error bounds, as against a simpler bound on ‖Θ − Θ̂‖. Clearly,
the same results extend to the special case of the Mixed Membership Stochastic Blockmodel [1] and
the Stochastic Blockmodel [13] as well (the assumption of equal diagonal entries of B is no longer
needed, since Γii = 1 is enough for parameter identifiability [22]).

3.2 Topic Models

Let T ∈ RV×K≥0 be a matrix of the word to topic probabilities with unit column sum, and let
H ∈ RK×D≥0 be the topic to document matrix. Then A := TH is the probability matrix for words
appearing in documents. The actual counts of words in documents are assumed to be generated iid as
Aij ∼ Binomial(N,Aij) for i ∈ [V ], j ∈ [D].

The word co-occurrence probability matrix is given by AAT /D = T(HHT /D)TT . Setting
Γii = ‖T(i, :)‖1, Θ = Γ−1T, and B = HHT /D, we find that AAT /D = ΓΘBΘTΓ with
Θ1 = 1. This clearly matches the form of P in the DCMMSB model. Hence, its eigenvector matrix
has the desired conic structure with weight matrix M = TΓ−1

P N−1
P , with the “pure nodes” being

anchor words that only occur in a single topic. We now show that the row-wise error between the
empirical and population eigenvector matrices decays with increasing number of documents D and
number of words in a document N .

Assumption 3.1. Let gik = eTi AAT ek. We assume that when it is not zero, it goes to infinity, in
particular, gik ≥ 4N log max(V,D)/3. We also assume that D/N →∞, λi(HHT ) = Θ(D), for
i ∈ [K], and κ(TTT ) = Θ(1).

These assumptions are similar to ones made in other theoretical literature on topic models [19].

We will construct a matrix A1AT
2 , where A1 and A2 are obtained by dividing the words in each

document uniformly randomly in two equal parts. This ensures that E[A1AT
2 ] = AAT , which in

turn helps establishing concentration of empirical singular vectors as shown in the following lemma.
For simplicity denote N1 = N/2.
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(a) Varying degree hetero-
geneity for DCMMSB

(b) Varying sparsity for
DCMMSB

(c) Varying sparsity for
OCCAM model

(d) Varying sparsity for
SBMO

Figure 2: Relative error in estimation of community memberships: Plots (a) and (b) compare SVM-
cone against the closest baseline (GeoNMF) on the degree-corrected MMSB model. We then compare
against (c) OCCAM and (d) SAAC on networks drawn from their generative models.

Lemma 3.3 (Small row-wise error in Topic Models). Let V̂ denote the matrix of the top-K singular
vectors of U = A1AT

2 /N
2
1 . Let the population counterpart of this be V. Under Assumption 3.1, for

i ∈ [K], we have:

‖eTi (V̂V̂T −VVT )‖F = 1
λK(TTT)OP

(√
K log max(V,D)

DN

)
uniformly for all i, with probability at least 1−O(1/D).

Thus, Algorithm 1 run on V̂V̂T (or equivalently, just V̂) can be used to find the conic combination
weights M̂ ≈M. Since M being the product of T with a diagonal matrix where T has unit column
sum, we can extract T̂ = M̂D̂−1, where D̂ is a diagonal matrix with D̂ii = ‖M̂(:, i)‖1.
Theorem 3.4 (Consistent inference of word-topic probabilities for each word). Under Assumption 3.1,
there exists a permutation matrix Π such that

‖eTi (T̂−TΠT )‖
‖eTi T‖

= OP

(
K4 maxj ‖eTj T‖1
η(minj ‖eTj T‖1)2

√
log max(V,D)

DN

)
.

Remark 3.3. We have η ≥ mini ‖eTi T‖/λ1(TTT) ≥ mini ‖eTi T‖/K (supplementary material).

4 Experiments

We ran experiments on simulated and real-world datasets to verify the accuracy and scalability of
SVM-cone. We compared SVM-cone against several competing baselines. For network models,
GeoNMF detects the corners of a simplex formed by the MMSB model by constructing the graph
Laplacian and picking nodes that have large norms in the Laplacian [21]. It assumes balanced
communities (i.e., the rows of Θ are drawn from a Dirichlet with identical community weights). SVI
uses stochastic variational inference for MMSB [12]. BSNMF [25] presents a Bayesian approach to
Symmetric Nonnegative Matrix Factorization; it can be applied to do inference for MMSB models
with B = cI where c ∈ [0, 1]. OCCAM works on a variant of MMSB where each row of Θ has
unit `2 norm, and the model allows for degree heterogeneity [33]. SAAC [18] uses alternating
optimization on a version of the stochastic blockmodel where each node can be a member of
multiple communities, but the membership weight is binary. For topic models, RecoverL2 [5] uses a
combinatorial algorithm to pick anchor words from the word co-occurrence matrix and then recovers
the word-topic vectors by optimizing a quadratic loss function. TSVD [7] uses a thresholded SVD
based procedure to recover the topics. GDM [32] is a geometric algorithm that involves a weighted
clustering procedure augmented with geometric corrections. We could not obtain the code for [19].

4.1 Networks with overlapping communities

In this section, we present experiments on simulated and large real networks.

4.1.1 Simulations

We test the recovery of population parameters (Θ,B) given adjacency matrices A generated from
the corresponding population matrices P (Γ are nuisance parameters). We generate networks with
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Figure 3: Accuracy of estimated community memberships for (a) the DBLP coauthorship network
and (b) the biparite author-paper DBLP network. (c) The wall-clock time of the competing methods
on the DBLP coauthorship network respectively.

n = 5000 nodes andK = 3 communities. The rows of Θ are drawn from Dirichlet(α) for DCMMSB
and OCCAM; for DCMMSB, α = (1/3, 1/3, 1/3); for OCCAM, α = (1/6, 1/6, 1/6) and the rows
are normalized to have unit `2 norm. We set Bii = 1 and Bij = 0.1 for all i 6= j. The default degree
parameters for DCMMSB are as follows: for all nodes i that are predominantly in the j-th community
(θij > 0.5), we set Γii to 0.3, 0.5, and 0.7 for the 3 respective communities; all other nodes have
Γii = 1. For OCCAM, we draw degree parameters from a Beta(1, 3) distribution.

Varying degree parameters Γ: We set the degree parameters for predominant nodes in the 3
communities as 0.5 + εΓ, 0.5, and 0.5 + εΓ respectively. Figure 2a shows SVM-cone outperforms
GeoNMF consistently for all choices of εΓ.

Varying network sparsity ρ: Figure 2b shows the relative error in estimating Θ as a function of
the network sparsity ρ. Increasing ρ increases the average degree of nodes in the network without
affecting the skew induced by their degree parameters Γ. As expected, all methods tend to improve
with increasing degree. Our method dominates GeoNMF over the entire range of average degrees.
Figures 2c and 2d show results for networks generated under the models used by OCCAM and SAAC
respectively. SVM-cone is comparable or better than these methods even on their generative models.
The smaller error bars on SVM-cone show that it is more stable than SAAC.

4.1.2 Real-world experiments

We tested SVM-cone on large network datasets and word-document datasets. For networks, we
used the 5 DBLP coauthorship networks1 (used in [21], where each ground truth community
corresponds to a group of conferences on the same topic. We also use bipartite author-paper
variants for these 5 networks. Following [21], we evaluate results by the rank correlation be-
tween the predicted vector for community i against the true vector, averaged over all communities:
RCavg(Θ̂,Θ) = 1

K maxσ
∑K
i=1RC(Θ̂(:, i),Θ(:, σ(i))),where σ is a permutation over theK com-

munities. We have −1 ≤ RCavg(Θ̂,Θ) ≤ 1, with higher numbers implying a better match between
Θ̂ and Θ. We do not use metrics like NMI [31] or ExNVI [33] that require binary overlapping
membership vectors to avoid thresholding issues on real-valued membership vectors.

We find that SVM-cone outperforms competing baselines on 2 of the 5 DBLP coauthorship datasets,
and is similar on the remaining three (Figure 3a). The closest competitor is GeoNMF [21], which
assumes that all nodes have the same degree parameter, and the community sizes are balanced. Both
assumptions are reasonable for the dataset, since the number of coauthors (the degree) does not
vary significantly among authors, and the communities are formed from conferences where no one
conference dominates the others. The differences between SVM-cone and the competition is starker
on the bipartite dataset (Figure 3b). There is severe degree heterogeneity: an author can be connected
to many papers, while each paper only has a few authors at best. Our method is able to accommodate
such differences between the nodes, and hence yields much better accuracy than others.

Finally, Figure 3c shows the wall-clock time for running the various methods on DBLP coauthorship
networks (wall-clock time on DBLP bipartite author-paper networks is included in the supplementary
material). Our method is among the fastest. This is expected; the only computationally intensive step
is the one-class SVM and top-K eigen-decomposition (or SVD), for which off-the-shelf efficient and
scalable implementations already exist [10].

1http://www.cs.utexas.edu/~xmao/coauthorship
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4.2 Topic Models

We generate semi-synthetic data following [5] and [7] using NIPS1, New York Times1 (NYT),
PubMed1, and 20NewsGroup2 (20NG). Dataset statistics are included in the supplementary material.
We use Matlab R2018a built-in Gibbs Sampling function for learning topic models to learn the
word by topic matrix, which should retain the characteristics of real data distributions. Then we
draw the topic-document matrix from Dirichlet with symmetric hyper-parameter 0.01. We set
K = 40 for the first 3 datasets and K = 20 for 20NG. The word counts matrix is sampled with
N = 1000, 300, 100, 200 respectively, which matches the mean document length of the real datasets.
We evaluate the performance of different algorithms using `1 reconstruction error 1

K

∑
i,j |T (i, j)−

T̂ (i, π(j)) |, where π(.) is a permutation function that matches the topics. Table 1 shows the `1
reconstruction error and wall-clock running time of different algorithms with datasets generated from
different number of documents. Each setting is repeated 5 times, and we report the mean and standard
deviation of the results. SVM-cone is much faster than the other methods. Its accuracy is comparable
to RecoverL2, and significantly better than TSVD and GDM. The supplementary material also shows
the top-10 words of 5 topics learned from SVM-cone for each dataset.

Table 1: `1 reconstruction error and wall-clock time on semi-synthetic datasets

Corpus Documents RecoverL2 TSVD GDM SVM-cone

NIPS

20000 `1 Error 0.059 (± 0.000) 0.237 (± 0.017) 0.081 (± 0.057) 0.071 (± 0.004)
Time/s 100.11 (± 8.81) 18.54 (± 2.04) 119.66 (± 4.41) 5.33 (± 0.39)

40000 `1 Error 0.043 (± 0.000) 0.250 (± 0.045) 0.061 (± 0.038) 0.051 (± 0.002)
Time/s 143.34 (± 0.53) 21.97 (± 1.49) 220.92 (± 3.10) 9.07 (± 0.00)

60000 `1 Error 0.036 (± 0.000) 0.269 (± 0.064) 0.059 (± 0.038) 0.041 (± 0.002)
Time/s 247.34 (± 20.84) 35.77 (± 3.28) 406.87 (± 36.57) 17.63 (± 5.29)

NYT

20000 `1 Error 0.125 (± 0.000) 0.207 (± 0.025) 0.223(± 0.008) 0.131 (± 0.003)
Time/s 78.15 (± 7.14) 25.11 (± 6.39) 193.43 (± 12.02) 4.51 (± 0.70)

40000 `1 Error 0.103 (± 0.000) 0.197 (± 0.045) 0.216 (± 0.010) 0.106 (± 0.001)
Time/s 140.84 (± 15.50) 50.18 (± 13.14) 394.16 (± 30.42) 8.04 (± 1.15)

60000 `1 Error 0.095 (± 0.000) 0.166 (± 0.028) 0.210 (± 0.010) 0.096 (± 0.002)
Time/s 184.69 (± 20.65) 42.96 (± 7.95) 595.54 (± 91.57) 11.82 (± 1.91)

PubMed

20000 `1 Error 0.163 (± 0.000) 0.239 (± 0.032) 0.277 (± 0.051) 0.181 (± 0.002)
Time/s 54.32 (± 5.94) 15.75 (± 2.34) 205.95 (± 11.27) 2.06 (± 0.46)

40000 `1 Error 0.122 (± 0.000) 0.255 (± 0.018) 0.251 (± 0.041) 0.138 (± 0.001)
Time/s 78.99 (± 9.99) 26.44 (± 4.49) 459.17 (± 30.71) 3.73 (± 0.37)

60000 `1 Error 0.098 (± 0.000) 0.275 (± 0.041) 0.269 (± 0.052) 0.114 (± 0.001)
Time/s 98.19 (± 15.06) 24.57 (± 4.59) 649.97 (± 26.48) 5.44 (± 0.38)

20NG

20000 `1 Error 0.100 (± 0.000) 0.111 (± 0.051) 0.137 (± 0.071) 0.090 (± 0.003)
Time/s 40.74 (± 0.64) 7.51 (± 0.42) 102.86 (± 4.05) 1.85 (± 0.26)

40000 `1 Error 0.074 (± 0.000) 0.081 (± 0.043) 0.131 (± 0.072) 0.064 (± 0.001)
Time/s 94.42 (± 9.92) 16.04 (± 2.28) 273.51 (± 16.45) 4.33 (± 0.71)

60000 `1 Error 0.058 (± 0.000) 0.133 (± 0.045) 0.096 (± 0.063) 0.052 (± 0.002)
Time/s 142.34 (± 20.31) 23.36 (± 5.85) 388.47 (± 43.22) 5.89 (± 0.67)

5 Conclusions

We showed that many distinct models for overlapping clustering can be placed under one general
framework, where the data matrix is a noisy version of an ideal matrix and each row is a non-negative
weighted sum of “exemplars.” In other words, the connection probabilities of one node to others
in a network is a non-negative combination of the connection probabilities of K “pure” nodes to
others in the network. Each pure node is an examplar of a single community, and we require one
pure node from each of the K communities. This geometrically corresponds to a cone, with the
pure nodes being its corners. This subsumes Mixed-Membership Stochastic Blockmodels and their
degree-corrected variants, as well as commonly used topic models. We showed that a one-class SVM
applied to the normalized rows of the data matrix can find both the corners and the weight matrix.
We proved the consistency of our SVM-cone algorithm, and used it to develop consistent parameter
inference methods for several widely used network and topic models. Experiments on simulated and
large real-world datasets show both the accuracy and the scalability of SVM-cone.

1https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
2http://qwone.com/~jason/20Newsgroups/
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