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Abstract

This supplementary article contains an appendix to our paper “Mean Field for
the Stochastic Blockmodel: Optimization Landscape and Convergence Issues”,
providing derivation of stationarity equations for the mean field log-likelihood and
the proofs of our main results.

1 The Variational principle and mean field

We start with the following simple observation:

logP (A;B, π) = log
∑
Z

P (A,Z;B, π) = log

(∑
Z

P (A,Z;B, π)

ψ(Z)
ψ(Z)

)
(Jensen)
≥

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z) ∀ψ prob. on Z.

In fact, equality holds for ψ∗(Z) = P (Z|A;B, π). Therefore, if Ψ denotes the set of all probability
measures on Z , then

logP (A;B, π) = max
ψ∈Ψ

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z). (A.1)

The crucial idea from variational inference is to replace the set Ψ above by some easy-to-deal-with
subclass Ψ0 to get a lower bound on the log-likelihood.

logP (A;B, π) ≥ max
ψ∈Ψ0⊂Ψ

∑
Z

log

(
P (A,Z;B, π)

ψ(Z)

)
ψ(Z). (A.2)

Also the optimal ψ? ∈ Ψ0 is a potential candidate for an estimate of P (Z|A;B, π). Estimating
P (Z|A;B, π) is profitable since then we can obtain an estimate of the community membership

∗Equal contribution.

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



matrix by setting Zia = 1 for the ith agent where

a = arg max
b
P (Zib = 1|A;B, π). (A.3)

The goal now has become optimizing the lower bound in (A.2).

2 Derivation of stationarity equations

Every stationary point θ = (ψ, p, q) of the mean field log-likelihood satisfies ∇θ`(θ) = 0. In
particular,

0 =
∂`

∂ψi
= 4t

∑
j:j 6=i

(ψj −
1

2
)(Aij − λ)− log

(
ψi

1− ψi

)

0 =
∂`

∂p
=

1

2

∑
i,j:i 6=j

(ψiψj + (1− ψi)(1− ψj))
(
Aij

(
1

p
+

1

1− p

)
− 1

1− p

)

0 =
∂`

∂q
=

1

2

∑
i,j:i 6=j

(ψi(1− ψj) + (1− ψi)ψj)
(
Aij

(
1

q
+

1

1− q

)
− 1

1− q

)
. (A.4)

Therefore

∂2`

∂ψj∂ψi
= 4t(Aij − λ)(1− δij)−

1

ψi(1− ψi)
δij

∂2`

∂ψi∂p
=

1

2

∑
j:j 6=i

(
1

2
− ψj

)(
Aij

(
1

p
+

1

1− p

)
− 1

1− p

)
∂2`

∂ψi∂q
=

1

2

∑
j:j 6=i

(
ψi −

1

2

)(
Aij

(
1

q
+

1

1− q

)
− 1

1− q

)
∂2`

∂p2
=

1

2

∑
i,j:i 6=j

(ψiψj + (1− ψi)(1− ψj))
(
Aij

(
− 1

p2
+

1

(1− p)2

)
− 1

(1− p)2

)
∂2`

∂q2
=

1

2

∑
i,j:i 6=j

(ψi(1− ψj) + (1− ψi)ψj)
(
Aij

(
− 1

q2
+

1

(1− q)2

)
− 1

(1− q)2

)
∂2`

∂q∂p
= 0. (A.5)

3 Proofs of main results

Proof of Proposition 3.1. For any a > b > 0, we have

a− b
a

< log

(
a

b

)
<
a− b
b

,

which can be proved using the inequality log(1 + x) < x for x > −1, x 6= 0. Therefore

p− q
p

< log

(
p

q

)
<
p− q
q

, and
p− q
1− q

< log

(
1− q
1− p

)
<
p− q
1− p

.

So
(p− q)(1 + p− q)

2(1− q)p
< t =

1

2

(
log

(
p

q

)
+ log

(
1− q
1− p

))
<

(p− q)(1− p+ q)

2(1− p)q
,

and

q =

p−q
1−q

p−q
q + p−q

1−q
< λ =

log( 1−q
1−p )

log(pq ) + log( 1−q
1−p )

<

p−q
1−p

p−q
p + p−q

1−p
= p.
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3.1 Proofs of results in Section 3.1

Proof of Proposition 3.2. That ψ = 1
21 is a stationary point is obvious from the stationarity equations

(A.4). The eigenvalues of −4I + 4tM , the Hessian at 1
21, are hi = −4 + 4tνi. We have ν1 =

nα+ − (p − λ) = Θ(n), and hence so is h1. Also, p − λ > 0, so that ν3 < 0, and hence h3 < 0.
Thus we have two eigenvalues of the opposite sign.

Proof of Theorem 3.3. From (5), we have

ψ
(s+1)
i = g(na(s)

σi
+ b

(s)
i ) = g(na(s)

σi
) + δ

(s)
i ,

where |δ(s)
i | = O(exp(−n|a(s)

σi |)), where we have used the fact that

g(nx+ y)− g(nx) = g(nx)g(nx+ y)(ey − 1) exp(−(nx+ y)).

Writing as a vector, we have

ψ(s+1) = g(na
(s)
+1)1C1 + g(na

(s)
−1)1C2 + δ(s), (A.6)

where ‖δ(s)‖∞ = maxi |δ(s)
i | = O(exp(−nmin{|a(s)

+1|, |a
(s)
−1|})). Note that by our assumption,

‖δ(0)‖∞ = O(exp(−nmin{|a(s)
+1|, |a

(s)
−1|})) = o(1). Now

ζ
(s+1)
1 =

〈ψ(s+1), u1〉
n

=
g(na

(s)
+1) + g(na

(s)
−1)

2
+O(‖δ(s)‖∞),

and

ζ
(s+1)
2 =

〈ψ(s+1), u2〉
n

=
g(na

(s)
+1)− g(na

(s)
−1)

2
+O(‖δ(s)‖∞).

Note that g(na
(s)
±1) = 1{a(s)±1>0} +O(‖δ(s)‖∞). Now, using (A.6),we have

‖ψ(s+1) − `(ψ(0))‖22
n

=
‖(g(na

(s)
+1)− 1{a(0)+1>0})1C1 + (g(na

(s)
−1)− 1{a(0)−1>0})1C2 + δ(s)‖2

n

≤
2(‖(g(na

(s)
+1)− 1{a(0)+1>0})1C1‖

2
2 + ‖(g(na

(s)
−1)− 1{a(0)−1>0})1C2‖

2
2 + ‖δ(s)‖2)

n

≤ |g(na
(s)
+1)− 1{a(0)+1>0}|

2 + |g(na
(s)
−1)− 1{a(0)−1>0}|

2 + 2‖δ(s)‖2∞

= |1{a(s)+1>0} − 1{a(0)+1>0}|
2 + |1{a(s)+1>0} − 1{a(0)−1>0}|

2 +O(‖δ(s)‖2∞). (A.7)

From the above representation and our assumption on n|a(0)
±1|, the bound for s = 1 follows. We will

now consider the four different cases of different signs of a(s)
±1.

Case 1: a(s)
1 > 0, a

(s)
−1 > 0. In this case g(na

(s)
1 ) = g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (1, 0) +O(‖δ(s)‖∞).

This implies
a

(s+1)
±1 = 2tα+ +O(‖δ(s)‖∞).

If α+ > 0, a(s+1)
±1 have the same sign as a(s)

±1. Otherwise, if α+ < 0, both of them become
negative (and we thus have to go to Case 2 below). Note that, here and in the subsequent cases,
we are using that fact that ‖δ(s)‖∞ = o(1), for s = 0, by our assumption and it stays the same
for s ≥ 1 because of relations like the above (that is a(1)

±1 = −2tα+ + o(1), so that ‖δ(1)‖∞ =

exp(−nmin{|a(1)
+1|, |a

(1)
−1|}) = O(exp(−Cntα+)) = o(1), and so on).
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Case 2: a(s)
1 < 0, a

(s)
−1 < 0. In this case 1− g(na

(s)
1 ) = 1− g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (0, 0) +O(‖δ(s)‖∞).

This implies
a

(s+1)
±1 = −2tα+ +O(‖δ(s)‖∞).

If α+ > 0, a(s+1)
±1 have the same sign as a(s)

±1. Otherwise, if α+ < 0, both of them become positive
(and we thus have to go to Case 1 above).

Case 3: a(s)
1 > 0, a

(s)
−1 < 0. In this case g(na

(s)
1 ) = 1− g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (

1

2
,

1

2
) +O(‖δ(s)‖∞).

This implies
a

(s+1)
±1 = ±2tα− +O(‖δ(s)‖∞).

Since α− > 0, a(s+1)
±1 have the same sign as a(s)

±1.

Case 4: a(s)
1 < 0, a

(s)
−1 > 0. In this case 1− g(na

(s)
1 ) = g(na

(s)
−1) = 1 +O(‖δ(s)‖∞), so that

(ζ
(s+1)
1 , ζ

(s+1)
2 ) = (

1

2
,−1

2
) +O(‖δ(s)‖∞).

This implies
a

(s+1)
±1 = ∓2tα− +O(‖δ(s)‖∞).

Since α− > 0, a(s+1)
±1 have the same sign as a(s)

±1.

Note that, in the case α+ = 0, a(s)
±1 = ±4tζ

(s)
2 α−, so that a(s)

±1 have opposite signs and we land in
Cases 3 or 4.

We conclude that, if α+ ≥ 0, then we stay in the same case where we began, and otherwise if α+ < 0
we have a cycling behavior between Cases 1 and 2. Now the desired conclusion follows from the
bound (A.7).

In the proof above, we can allow sparser graphs, with p, q � 1
n . More explicitly, let p = ρna, q =

ρnb, with a > b > 0 and ρn � 1
n . Then, t = Ω(1), and α+ ≤ p−q = ρn(a−b), α− = (p−q)/2 =

ρn(a− b)/2. So, we do have nt|α±| → ∞.

Proof of Theorem 3.4. We begin by noting that M̂ −M = A− E(A|Z). For the first iteration, we
rewrite the sample iterations (7) as

ξ̂(1) = 4tM

(
ψ(0) − 1

2
1

)
+ 4t(M̂ −M)

(
ψ(0) − 1

2
1

)
= ξ(1) + 4t(A− E(A|Z))

(
ψ(0) − 1

2
1

)
︸ ︷︷ ︸

=:nr(0)

.

Therefore, similar to the population case, we have

ψ̂
(1)
i = g(na(0)

σi
+ b

(0)
i + nr

(0)
i ).

Note that
r

(0)
i =

4t

n

∑
j 6=i

(Aij − E(Aij |Zi, Zj))(ψ(0)
j −

1

2
).

Assume that ψ(0) is independent of A. Since our probability statements will be with respect to the
randomness in A, we may assume that ψ(0) is fixed. Let Yij = (Aij − EAij)(ψ(0)

j − 1
2 ). Then

the Yij are independent random variables for j 6= i, and E(Yij) = 0. Also, |Yij | ≤ |ψ(0)
j − 1

2 | ≤

4



‖ψ(0) − 1
2‖∞ = ∆, say, and EY 2

ij = (ψ
(0)
j − 1

2 )2Var(Aij) = O(ρn(ψ
(0)
j − 1

2 )2). So, by Bernstein’s
inequality,

P(
1

n

∑
j 6=i

Yij > ε) ≤ exp

( − 1
2n

2ε2∑
j 6=i EY 2

ij + 1
3∆nε

)

≤ exp

( − 1
2n

2ε2

Cρn‖ψ(0) − 1
2 )‖22 + 1

3∆nε

)
≤ exp

( − 1
2n

2ε2

Cnρn∆2 + 1
3∆nε

)
.

It follows from here that nr(0)
i = O(

√
nρn∆ log n) with high probability, if

√
nρn = Ω(log n).

In fact, by taking a suitably large constant in the big “Oh”, we can show, via a union bound, that
maxi nr

(0)
i = O(

√
nρn∆ log n) with high probability.

Now, under our assumption n|a(0)
±1| � max{√nρn‖ψ(0) − 1

2‖∞ log n, 1}, it follows that na(0)
σi �

nr
(0)
i + b

(0)
i , with high probability, simultaneously for all i. Thus, similar to the population case, we

can write
ψ̂(1) = g(na

(0)
+1)1C1 + g(na

(0)
−1)1C2 + δ̂(0),

where ‖δ̂(0)‖∞ = O(exp(−nmin{|a(0)
+1|, |a

(0)
−1|})) = o(1), with high probability. After this the

proof proceeds like the the proof of Theorem 3.3, and so we omit it.

Proof of Corollary 3.5. From Theorem 3.3, it follows that, when α+ > 0,

M(S1) ≥M({ψ(0) | a(0)
+1 > 0, a

(0)
−1 > 0, na

(0)
±1 � 1}

= M({ψ(0) | a(0)
+1 �

1

n
, a

(0)
−1 �

1

n
})

≥M({ψ(0) | a(0)
+1 >

1

nγ
, a

(0)
−1 >

1

nγ
}),

for any 0 < γ < 1 and so on for the other other limit points.

More explicitly,

{ψ(0) | a(0)
+1 >

1

nγ
, a

(0)
−1 >

1

nγ
} = {ψ(0) | (ζ(0)

1 − 1

2
)α+ + ζ

(0)
2 α− >

1

4tnγ
,

(ζ
(0)
1 − 1

2
)α+ − ζ(0)

2 α− >
1

4tnγ
}

= Hγ
+ ∩H

γ
− ∩ [0, 1]n,

All in all, we have
M(S1) ≥ lim

γ↑1
M(Hγ

+ ∩H
γ
− ∩ [0, 1]n).

3.2 Proofs of results in Section 3.2

Proof of Proposition 3.6. That the described point is a stationary point is easy to verify, because of
the presence of the (ψi − 1

2 ) terms in the stationarity equations (A.4). Now, from (A.5), we see that
the Hessian matrix at ( 1

21,
1>A1
n(n−1) ,

1>A1
n(n−1) ,

1
2 ) is given by

H =

−4I 0 0

0> − n(n−1)
4â(1−â) 0

0> 0 − n(n−1)
4â(1−â)

 ,

where â = 1>A1
n(n−1) . Clearly, H is negative definite. This completes the proof.
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Proof of Lemma 3.1. First note that conditioning on the true labels Z, E(A|Z) = P − pI . For the
update of p(1), we have

p(1) =
ψT (P − pI)ψ + (1− ψ)T (P − pI)(1− ψ)

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)

+
ψT (A− E(A|Z))ψ + (1− ψ)T (A− E(A|Z))(1− ψ)

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)
,

where the first term can be written as

ψT (p+q2 u1u
T
1 + p−q

2 u2u
T
2 − pI)ψ + (1− ψ)T (p+q2 u1u

T
1 + p−q

2 u2u
T
2 − pI)(1− ψ)

ψT (u1uT1 − I)ψ + (1− ψ)T (u1uT1 − I)(1− ψ)

=
p+q

2 n2(ζ2
1 + (1− ζ1)2) + n2(p− q)ζ2

2 − px
ζ2
1n

2 + (1− ζ1)2n2 − x

=
p+ q

2
+

(p− q)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2

,

where x = ψTψ + (1 − ψ)T (1 − ψ) ≥ n2/4. The second term can be bounded by noting
E(ψT (A−E(A|Z))ψ) = 0 and Var(ψT (A−E(A|Z))ψ) ≤ 2n(n−1)p. By Chebyshev’s inequality,
ψT (A− E(A|Z))ψ = OP (

√
ρnn).

This is because:

Eψ,A[ψT (A− E(A|Z))ψ] = EψEA[ψT (A− E(A|Z))ψ
∣∣ψ] = 0,

and,

Varψ,A[ψT (A− E(A|Z))ψ] = EVar(ψT (A− E(A|Z))ψ
∣∣ψ) + Var(E[ψT (A− E(A|Z))ψ

∣∣ψ])

= EVar(ψT (A− E(A|Z))ψ
∣∣ψ)

= 4E
∑
i<j

ψiψjVar(Aij) ≤ 2n(n− 1)p

Similarly for (1− ψ)T (A− E(A))(1− ψ) and

ψT (J − I)ψ + (1− ψ)T (J − I)(1− ψ)

=

(∑
i

ψi

)2

+

(
n−

∑
i

ψi

)2

− ψTψ − (1− ψ)T (1− ψ)

≥n2/2− 2n.

since the first two terms are minimized at
∑
i ψi = n/2.

The update rule for q(1) is proved analogously.

Proof of Proposition 3.7. Let ψ = ζ1u1 + ζ2u2 +w, w ∈ span{u1, u2}⊥, be a stationary point. We
will consider the population version of all the updates and replace A with E(A|Z) = P − pI and
ρn → 0. By Lemma 3.1,

p̃ =
p+ q

2
+

(p− q)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2︸ ︷︷ ︸

ε′1

q̃ =
p+ q

2
− (p− q)(ζ2

2 + y/2n2)

2ζ1(1− ζ1)− y/n2︸ ︷︷ ︸
ε′2

. (A.8)
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In this case, the update equation (4) becomes

ξ = 4t̃(P − pI − λ̃(J − I))(ψ(s) − 1

2
1)

= 4t̃n

((
ζ1 −

1

2

)(
p+ q

2
− λ̃
)
u1 +

p− q
2

ζ2u2

)
+ 4t̃(λ̃− p)

(
ψ − 1

2
1

)
:= nã+ b̃ (A.9)

where λ̃ and t̃ are defined in terms of p̃ and q̃. Since ψ is a stationary point, the above update gives
ψ = g(ξ).

We consider the following cases.

Case 1: ζ2
2 = Ω(1). Since ζ1(1 − ζ1) ≥ ζ2

2 , it is easy to see (A.8) implies p̃ > p+q
2 > q̃, thus

p̃− q̃ = Ω(ρn), t̃ = Ω(1), p̃ < λ̃ < q̃. It follows then b̃i = O(ρn), and |ãi| = Ω(ρn) for i ∈ C1 or
i ∈ C2 (or both). In any of these cases, ‖w‖ = O(ρn

√
n) = o(

√
n).

Case 2: ζ2 = o(1). Note that ψT (1− ψ) ≥ 0 implies ζ1(1− ζ1)− ‖w‖
2

n ≥ ζ2
2 . If ‖w‖2 = o(n) we

are done. If ‖w‖2 = Ω(n), ζ1(1 − ζ1) = Ω(1). In this case, p̃ = p+q
2 + O(ρnζ

2
2 ), similarly for q̃.

It follows then t̃ = O(ζ2
2 ) = o(1), λ̃ = p+q

2 + o(ρn) (we defer the details to (A.12)- (A.16)). Also
note that b̃i = O(ρnζ

2
2 ). When n|ãi| � b̃i, g(ξi) = g(nãi) + o(1). Since g(nã) ∈ span{u1, u2},

this implies ‖w‖ = o(
√
n). When n|ãi| � b̃i, ξi = o(1), so we have ‖w‖ = o(

√
n) again.

Proof of Lemma 3.2. Let a = (p+q)/2. By (5), define κ1 := 4t
(
ζ1 − 1

2

)
(a−λ) and κ2 = 4tζ2

p−q
2 .

Consider the initial distribution ψ(0)(i)
iid∼ fµ where f is a distribution supported on (0, 1) with mean

µ. Note that we have the following:

ζ1 =
ψT1

n
= µ+OP (1/

√
n), (A.10)

ζ2 =
ψTu2

n
= OP (1/

√
n).

Now using (10),recall:

p(1) =
p+ q

2
+

(p− q)(ζ2
2 − x/2n2)

ζ2
1 + (1− ζ1)2 − x/n2︸ ︷︷ ︸

ε′1

+OP (
√
ρn/n)

︸ ︷︷ ︸
ε1

q(1) =
p+ q

2
− (p− q)(ζ2

2 + y/2n2)

2ζ1(1− ζ1)− y/n2︸ ︷︷ ︸
ε′2

−OP (
√
ρn/n)

︸ ︷︷ ︸
ε2

(A.11)

This gives:

ε1 = ε′1 +OP

(√
ρn

n

)
= OP

(ρn
n

)
+OP

(√
ρn

n

)
= OP

(√
ρn

n

)
,

ε2 = ε′2 +OP

(√
ρn

n

)
= OP

(√
ρn

n

)
.

We will use the following logarithmic inequalities for a > ε > 0:

2ε

a+ ε
≤ log

a+ ε

a− ε
≤ 2ε

a− ε
. (A.12)

7



Now we have

t =
1

2

(
log

(
a+ ε1
a− ε2

)
+ log

(
1− a+ ε2
1− a− ε1

))
,

2t ≥ ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a+ ε2
≥ (ε1 + ε2)

(a+ ε1)(1− a+ ε2)
,

2t ≤ (ε1 + ε2)

(a− ε2)(1− a− ε1)
. (A.13)

For λ, if ε1 + ε2 ≥ 0, we have

λ =
log 1−q(1)

1−p(1)

log p(1)

q(1)
+ log 1−q(1)

1−p(1)
≤ ε1 + ε2

1− a− ε1

/(
ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a− ε1

)
= a+ ε1. (A.14)

λ ≥ ε1 + ε2
1− a+ ε2

/(
ε1 + ε2
a− ε2

+
ε1 + ε2

1− a+ ε2

)
= a− ε2. (A.15)

If ε1 + ε2 ≤ 0,

λ =
log 1−q(1)

1−p(1)

log p(1)

q(1)
+ log 1−q(1)

1−p(1)
≥ ε1 + ε2

1− a− ε1

/(
ε1 + ε2
a+ ε1

+
ε1 + ε2

1− a− ε1

)
= a+ ε1, (A.16)

λ ≤ ε1 + ε2
1− a+ ε2

/(
ε1 + ε2
a− ε2

+
ε1 + ε2

1− a+ ε2

)
= a− ε2.

Now we are ready to estimate ξi. We define:

κ1 = 4t(ζ1 −
1

2
)(a− λ) ≤

∣∣∣∣ 2(ε1 + ε2)

(a− ε2)(1− a− ε1)

(
µ− 1

2
+OP (1/

√
n)

)
max(|ε1|, |ε2|)

∣∣∣∣
≤ 4 max{ε21, ε22}
a(1− a) +OP (

√
ρn/n)

∣∣∣∣µ− 1

2
+OP (1/

√
n)

∣∣∣∣ = OP (1/n2),

κ2 = 4tζ2
(p− q)

2
≤
∣∣∣∣ 2(ε1 + ε2)

(a− ε2)(1− a− ε1)
(p− q)OP

(
1√
n

)∣∣∣∣
≤ 4 max(|ε1|, |ε2|)
a(1− a) +OP (

√
ρn/n)

(p− q)OP (1/
√
n) = OP (

√
ρn/n

3/2). (A.17)

From (5),
ξ

(1)
i = n(κ1 + σiκ2) +OP (

√
ρn/n) = OP (

√
ρn/n)

since t = OP (1/(n
√
ρn)) by (A.13).

Now applying the update for ψ, we have:

ψ
(1)
i = g

(
OP (

√
ρn/n)

)
=

1

2
+OP (

√
ρn/n).

Proof of Lemma 3.3. In this setting, we write p(1), q(1) as follows:

p(1) = p− (p− q)
ζ21+(1−ζ1)2

2 − ζ2
2

ζ2
1 + (1− ζ1)2 − x/n2

+OP (
√
ρn/n),

q(1) = q + (p− q)ζ1(1− ζ1)− ζ2
2 − y/n2

2ζ1(1− ζ1)− y/n2
+OP (

√
ρn/n). (A.18)

From the proof of Lemma 3.2, Equation A.11, and Equation A.18, we have: ε1, ε2 < p+q
2 .

Also note that ε1, ε2 = ΩP (−(p− q)ζ2
2 +
√
ρn/n). Hence by the same argument as in Lemma 3.2,

|(p+ q)/2− λ| ≤ max(|ε1|, |ε2|) = p−q
2 +OP (1/n) by (A.18).
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Finally we see that

t = Θ(
ε1 + ε2
ρ

) = Θ
(
(p− q)ζ2

2/ρn
)

In addition, condition (13) implies ζ2
2 = ΩP (1), we see that t = ΩP (1) using (A.13).

Next, using (12) and A.17, we have

κ1 + κ2 = 4t

(
µ1 + µ2 − 1

2

(
p+ q

2
− λ
)

+
(µ1 − µ2)(p− q)

4
+OP (ρn/

√
n)

)
,

κ1 − κ2 = 4t

(
µ1 + µ2 − 1

2

(
p+ q

2
− λ
)
− (µ1 − µ2)(p− q)

4
+OP (ρn/

√
n)

)
.

Then condition (13) implies

n2(κ2
1 − κ2

2) ≤ n2t2(p− q)2

(
(µ1 + µ2 − 1)2 − (µ1 − µ2)2 +OP

(
ρn√

n(p− q)

))
< 0,

thus n(κ1 + κ2) and n(κ1− κ2) have opposite signs. We will now check if n(κ1 + σiκ2)→∞, and
it suffices to lower bound n(|κ2| − |κ1|). Since |µ1 − µ2| ≥ 2|µ1 + µ2 − 1|+OP

(
ρn√
n(p−q)

)
,

n(|κ2| − |κ1|) ≥ cnt(p− q)σi|µ1 − µ2| = σiΘ

(
|µ1 − µ2|3n

(p− q)2

ρn

)
for some constant c, so as long as |µ1 − µ2| ≥

(
ρn logn
n(p−q)2

)1/3

.

Thus κ1 + σiκ2 is growing to infinity with an order bounded below by ΩP (log n).

If n(κ1 +κ2) > 0, since ψ(1)
i = g(n(κ1 +σiκ2)+bi), we have ψ(1) = 1C1 +OP (exp(−Ω(log n))).

The case κ1 + κ2 < 0 is similar.
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