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Abstract

This supplementary article contains an appendix to our paper “Mean Field for
the Stochastic Blockmodel: Optimization Landscape and Convergence Issues”,
providing derivation of stationarity equations for the mean field log-likelihood and
the proofs of our main results.

1 The Variational principle and mean field

We start with the following simple observation:

log P(A; B, ) = logZ P(4,2;B,m) = log (Z - )w(Z)>
7 Z
(Jensen) ; log (W) ’(/J(Z) v’(/} prOb. on Z.

In fact, equality holds for ¢*(Z) = P(Z|A; B, 7). Therefore, if U denotes the set of all probability
measures on Z, then

AZBW)
(Z)

The crucial idea from variational inference is to replace the set ¥ above by some easy-to-deal-with
subclass ¥ to get a lower bound on the log-likelihood.

log P(A; B, 7) maleog ( ) V(Z). (A1)

log P(A; B,7) > max Zlog( ZJ)B’”)>¢(Z). (A2)

PYeW CW

Also the optimal 1, € Wy is a potential candidate for an estimate of P(Z|A; B, ). Estimating
P(Z|A; B, ) is profitable since then we can obtain an estimate of the community membership
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matrix by setting Z;, = 1 for the ¢th agent where
a = arg m?XP(Zib =1|4; B, 7). (A.3)

The goal now has become optimizing the lower bound in (A.2).

2 Derivation of stationarity equations

Every stationary point § = (¢, p,q) of the mean field log-likelihood satisfies Vf(d) = 0. In
particular,

0= 8% = 4tj§l —\) —log (1 i/’iwi)

— % = ;i’éj(wi(l — )+ (1 - 7/’11)7/’]')(141‘3‘ ((11 + 1iq> — 1iq> (A4)
Therefore
&ch’fwi = 4t(Ai; = N1 = dij) — mczj

i (o) (e ) )

i3 () (o))
gjf Z B %))(A” ( ) pi e —1p>2> T —1p>2)
gq % Z (i1 — ) + (1 1/’1)%)(1417(—;2—&- (11q)2> _ (11q)2)

6(2262 =0 (A5)

3 Proofs of main results

Proof of Proposition[3.1] For any a > b > 0, we have

L_b<10 a <a—b
a &8\ % b

which can be proved using the inequality log(1 + z) < z for x > —1, 2 # 0. Therefore

— — 1— —
Pq<10g(P) I M<log(q) LPoa
D q 1—gq

q - 1-p 1-p
So
(r—q)(1+p—q) ( ( ) (1—Q>> (r—q)(1-p+aq)
<t= log + log < )
2(1—-q)p 2 q 1-p 2(1-p)q
and P—q log(i=¢ P—q
‘= =g e Og(l_p) < 1—p —»
SR @) () B



3.1 Proofs of results in Section[3.1]

Proof of Proposition[3.2] That = %1 is a stationary point is obvious from the stationarity equations
(AZ). The eigenvalues of —41 + 4tM, the Hessian at 1, are h; = —4 + 4ty;. We have v =

nay — (p — A) = O(n), and hence so is hy. Also, p — A > 0, so that v3 < 0, and hence hz < 0.
Thus we have two eigenvalues of the opposite sign. O

Proof of Theorem[3.3] From (3)), we have
4 = g(nall) +6,7) = g(nal)) + 5.7,

where |0(*| = O(exp(—nla%?

)), where we have used the fact that
g(nz +y) — g(nz) = g(nz)g(nx + y)(e’ — 1) exp(—(nz + y)).
Writing as a vector, we have

Pt = g(nas_si)lcl + g(na(_si)lc2 + 66 (A.6)

where |60 = max; \5§3)| = O(exp(fnmin{|a(s)\ \a \})) Note that by our assumption,
18 s0 = O(exp(—nmin{la?], [a[})) = o(1). Now

i1 (@WETD uy) g(nal)) + g(nal?)
(o+1) _

_ (s)
~ - +0(169 1),

and

(s) (s)
) _ 60D ) gnal) —g(nal)
ot = W) _ gtnen) —90as) | o500,

Note that g(nag) = 1{a§f{>0} + O(]|6*)] ). Now, using (A.G),we have

[ — e )13

n

[(9(na) = 11,00, + (9(na) = 1,01 )1e, + 60|

n
2((9(nal)) = 1,00l I3 + g(nal™) =10 )es 13 + 15¢)]2)
n
l9(na]) =10 > +lg(nal™)) = 10 o)+ 206 1%
=Ny ~ 1{af1)>0}|2 0y ~ 1{a(f’2>0}|2 +O0(I81I%). (A7)

| /\
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From the above representation and our assumption on n|a(i0 % |, the bound for s = 1 follows. We will

now consider the four different cases of different signs of a(is i

Case 1: ag >0, a(s) > 0. In this case g(nag )) g(na (e )) =14 O(||6®]|00), so that

s+1 s+1
(G, 6T) = (1,0) + O(15 -
This implies
aY = 2tay + 069 0).
If oy > 0, ay have the same sign as alf i Otherwise, if a; < 0, both of them become
negative (and we thus have to go to Case 2 below). Note that, here and in the subsequent cases,
we are using that fact that ||6(*)||.c = o(1), for s = 0, by our assumption and it stays the same

fors > 1 because of relations like the above (that is ag = —2ta + o(1), so that ||6(V)]|, =

(S+1)

exp(—n min{\a \ \ \}) O(exp(—Cntay)) = o(1), and so on).



(s)

Case 2: a\” < 0,a"%) < 0. Inthis case 1 — g(na'”) = 1 — g(na')) = 1+ O(||5||»). so that

s+1 s+1 s
(€, ¢ YY = (0,0) + O([|69)|oo).
This implies
al = —2ta; +0(6%) |-

Ifar >0, a(s+1) have the same sign as a(ii Otherwise, if a < 0, both of them become positive

(and we thus have to go to Case 1 above).

s) (8)

Case 3: a;”’ > 0,a.; < 0. In this case g(na( )) 1- g(na(_si) =14+ O0(||6®]|s0), so that

S S 1 s
(H,687) = (3, 5) + 0I5 ).

This implies
Y = £2ta_ + 0(6) |-

(s (s )

1
Since a— > 0, aif ) have the same sign as ay

(s)

Case 4: a\” < 0,a")

> 0. In this case 1 — g(na!”) = g(na)) = 1+ O(||6¥||»), so that

(s+1)y _ 1 1 (s)
G = (55 =5) + 016 oo)-

This implies
a5 = F2ta +0(]|6W] o).

(s+1) (s ).

Since o~ > 0, ay; ’ have the same sign as a

Note that, in the case a; = 0, ail = j:4tC(S)a_, so that a(ii have opposite signs and we land in

Cases 3 or 4.

We conclude that, if i > 0, then we stay in the same case where we began, and otherwise if a« < 0
we have a cycling behavior between Cases 1 and 2. Now the desired conclusion follows from the

bound (A.7).
In the proof above, we can allow sparser graphs, with p, ¢ > % More explicitly, let p = ppa,q =

pnb, witha > b > 0and p,, > . Then, ¢t = Q(1),and vy < p—q = ppla—b),a_ = (p—q)/2 =
pn(a —b)/2. So, we do have nt|ay| — . O

Proof of Theorem[3.4] 'We begin by noting that M-—M=A- E(A|Z). For the first iteration, we
rewrite the sample iterations (/) as

£V = a4t <¢<0> - ;1> +4t(M — M) (¢<0 - 1)

=W 4 41(A — E(A]2)) (wo) - ;1) .

=:nr(0)

Therefore, similar to the population case, we have

1/)51) = g(na((,(i) + bgo) + m~§0)).

Note that 1

4t

0 0

r® = =3 (A~ B(Ay|Z0, 2) @0 - 3)-
J#i

Assume that 1/(*) is independent of A. Since our probability statements will be with respect to the

randomness in A, we may assume that 1) is fixed. Let Y;; = (A;; — IEAij)(wj(.O) — %). Then

the Y;; are independent random variables for j # 4, and E(Y;;) = 0. Also, |Y;;| < |@Z)j(.0) -3 <



H?/J(O) Tt%HOO = A, say, and EY}} = (’l[}(o — 3)?Var(4;;) = O(pn (' — £)%). So, by Bernstein’s
inequality,

—Lp2e?
Yii>e)<e
; / - (Zﬁél EY; + 1Ane>

1,22
< exp 2™ € .
- Cnp, A2+ lAne

It follows from here that nr = O(4 /npnA logn) with high probability, if . /pr. = Q(logn).
In fact, by taking a suitably large constant in the big “Oh”, we can show, via a union bound, that
max; nr( ) = O(y/npnAlogn) with high probability.

Now, under our assumption n|al’)| > max{,/fpn|¢© — 2loc log n, 1}, it follows that nal? >
nr® 4 p(©
can write

, with high probability, simultaneously for all . Thus, similar to the population case, we

’([}(1) = g(naﬂ)lcl + g(na(—(?)lCz + S(O)a

where [[69)]o, = O(exp(—nmin{|a{?)],|a”)[})) = o(1), with high probability. After this the
proof proceeds like the the proof of Theorem [3.3] and so we omit it.

O
Proof of Corollary[3.5] From Theorem [3.3] it follows that, when ary. > 0,
M(Sy) > MW@ [ a) >0,a°) > 0,naf) > 1}
1
=2 o) > 1. > 2}
0 I © 1
> [} > —.al% > o)),
for any 0 < v < 1 and so on for the other other limit points.
More explicitly,
WO 160 > S > = O (0 - Dy + o> o
+1 7y =17 0y ! 2/ T2 T T
©_ 1 0 1
Q7 = lar —Gla-> )
=H]NnH'N,1]",
All in all, we have
M(S1) > 11%1931(111 NH?NI0,1]™).
B!
O

3.2 Proofs of results in Section[3.2]

Proof of Proposition[3.6] That the described point is a stationary point is easy to verify, because of
the presence of the (¢; — ) terms in the stationarity equations (A.4). Now, from (A-3), we see that

1 1741 1741 1
25 n(n—1)’ n(n—1)’ 2

the Hessian matrix at (3 ) is given by

—41 0 0
H=|0" - 47111((7 iif% 0 ;
of 0 -HFy
where a = nl(;ﬂ) . Clearly, H is negative definite. This completes the proof. [



Proof of Lemma (3] First note that conditioning on the true labels Z, E(A|Z) = P — plI. For the
update of p!), we have

S _ET P —phb+ (L= ) (P~ pD)(1 )
P+ (L= @) (=L 9)
VT (A~ E(A12)6 + (1= )" (A~ E(412))(1 - ¥)
TU-De+ -9 T -DA-9)

where the first term can be written as
VT (] + Ptugug — ph)y + (1 = )" (Pptugu] + P3lugug — pI)(1 —9)
T (uruf — I+ (1 - w)T(ululT N1 =)

7107;(1”2((1 (1-G)?) +n*(p— )5 —

- Gn?+(1-G)n? -z

_pta . p=a)(G —z/2n?)

2 G+1-q)—a/n?

where z = ¢y + (1 — ¢)T(1 — ) > n?/4. The second term can be bounded by noting
E(pT(A—E(A|Z))¢) = 0and Var(yT (A—E(A|Z))y) < 2n(n—1)p. By Chebyshev’s inequality,
V(A= E(A|Z))) = Op(y/pan).
This is because:

Ey a0 (A= E(A|Z2))0] = By Eal¢" (A = E(A|Z))0] ¢] = 0,

and,
Vary, 4[07 (A — E(A|Z))y] = EVar(¢" (A — E(A|2))y|¢) + Var(E[¢T (A — E(A|2))y| ¢)])
= EVar(" (A —E(A|Z))¥| ¥)
=4E > thit;Var(A;;) < 2n(n — 1)p
1<j
Similarly for (1 — )T (A —E(A))(1 — ) and
OT(T =D+ 1 =) - D)1 - )

2
= (Zw) + <n— Zzz»z) Ty — (1=9)T(1-9)
2n2/2 — 2n.
since the first two terms are minimized at ) . 1); = n/2.

The update rule for ¢! is proved analogously. O

Proof of Proposition[3.7} Let ) = (uy + Caus + w, w € span{uy, us}*, be a stationary point. We
will consider the population version of all the updates and replace A with E(A|Z) = P — pI and
prn — 0. By Lemma[3.1]

_ p+q . (p—q)G —x/2n?)
N (ORI

p+aq (p—q)(C3+y/2n?)
2

TG G) g (A8)

’
€2

q




In this case, the update equation (@) becomes

€= 4H(P —pI — X(J ~ D)W ~ 1)

= 4din ((Q - ;) (p—;q - 5\) uy + pquQUQ) + 4F (X — p) <w - ;1)

‘=na+b (A.9)

where ) and 7 are defined in terms of 5 and §. Since ¥ is a stationary point, the above update gives
P =g(&).

We consider the following cases.

Case 1: (3 = Q(1). Since ¢1(1 — (1) > (3, it is easy to see implies p > X4 > ¢, thus

P—q=Q(pn), T =9Q(1), p < X < §. It follows then b; = O(p,,), and |a;| = Q(p,) fori € Cy or
i € Co (or both). In any of these cases, ||w|| = O(pny/n) = o(y/n).

Case 2: &, = o(1). Note that ¢ (1 — ¢) > 0 implies ¢ (1 — ¢;) — 122 > ¢2.1f w2 = o(n) we
are done. If ||w~||2 = Q(n), ¢1(1 = G1) = Q(1). In this case, p = 29 4 O(p,(3), similarly for .
It follows then £ = O(¢3) = o(1), A = 2£2 + o(p,,) (we defer the details to (A.12)- (A-16)). Also
note that b; = O(p,(3). When na;| > 51;, g(&;) = g(na;) + o(1). Since g(na) € spanf{uy, us},
this implies ||w|| = o(y/n). When n|a;| < b;, & = o(1), so we have ||w|| = o(y/n) again. O

Proof of Lemma 3.2} Leta = (p+q)/2. By (B), define 1y := 4t (¢; — %) (a— ) and ko = 4t( 252,

Consider the initial distribution /(%) (4) b fu where f is a distribution supported on (0, 1) with mean
. Note that we have the following:

T
G = % = pu+O0p(1/vn), (A.10)

G =22 = 0,0/v).

Now using (I0),recall:
W _rta (p—a) (G —z/2n*)
=2 TGP TPV
_ 2 2
¢ = pta (-G +y/2n%) Or(n) )

2 2G(1—¢G1) —y/n?

/
€2

€2

This gives:

e = ¢ +Op (“f) =0p(p7j)+op(“f> =OP<W‘>,
e — )+ Op (f) _0p (f)

We will use the following logarithmic inequalities for a > € > 0:

2 9
€ clogtteo 2 (A.12)
a—+ € a— € a— €




Now we have

1 1-—
t==(log atea +log lzavte 7
2 a— €y l1—a—¢€

2t261+62+ €1 + €2 > (€1+62> ’
ater l—ate ~ (ate)(l—a+e)
9% < (a1 +e) (A.13)

(CL — 62)(1 —a— 61).
For A\, if €1 + €5 > 0, we have
—q®

1
beimym  _ _a+te /<€1+62+ ate )-a—f—e (A.14)
= 1. .

log (1)+1g1‘1§1;*1—a—61 a+e  l—a—e
€1 + €2 €1 + €2 €1 + €2
=qa — €9. A.15
- 1—a+62/(a—62 +1—a—&—62> e ( )
Ife; +e2 <0,
e
log ==
5= - 1 p(l) > €1 + €2 /(€1+€2+ €1 + € )=a+61, (A.16)
logp(1)+1og1 q(1> 1_a_€1 a+ €1 1_a_€1

A< €1 + €2 €1+€2+ €1 + €2 —a— e
1—a+ey a— €9 1—a+ey

Now we are ready to estimate &;. We define:

= 44(G — 3)la=X) < |7 fS;ﬁ_?_ - <u R opu/\/ﬁ)) max(Je1], m\
tmade, g} |1 o

ot <o ()
tmadler 2, g)0p(1/vi) = Op(y/on/n). (a7

a(l —a)+ Op(\/pn/n)

From (3),

&V = n(k1 + gik2) + Op(y/pn/n) = Op(v/pn/n)
since t = Op(1/(n\/pn)) by (AI3).
Now applying the update for 1/, we have:

0 = g(opm/pn/n)) = L+ 0p (V).

O]
Proof of Lemma[3.3} In this setting, we write p(*), ¢(*) as follows:
M
P =p—(p-d) O,
G+(1-¢)2—x/n
1— _ 2 712
qV =g+ (p- LW =G WL (). (A.18)

2Gi(1 = ¢1) —y/n?
From the proof of Lemma Equation|A.11} and Equation|A.18] we have: €1, e, < 231

Also note that €1, €2 = Qp(—(p — q)(3 + \/pn/n). Hence by the same argument as in Lemma
[(p+q)/2 = Al < max([ea], |e2]) = B3 + Op(1/n) by (A.I8).



Finally we see that
€1 + €2

p

t=06( ):@((P*Q)CQQ//M)

In addition, condition (T3) implies (3 = Qp(1), we see that t = Qp(1) using (A13).
Next, using (12) and we have

Ii1+l€2=4t<ul+u2_1 <p+q—/\>+(“1_”2)(p_q)+0p(pn/\/ﬁ)),

2 2 4
/<;1/<;2—4t<m+';2_1 (p;rq)\>wl)(p_(n+0p(pn/\/ﬁ))~

Then condition (T3) implies
2(,2 _ k2) < n282(p — )2 12— . 2,0 Pn 0
w2 =) < w2~ 0 (g = 1 = (o )+ 0 (=P ) ) <0

thus n(k1 + k2) and n(k1 — k2) have opposite signs. We will now check if n(k1 + o;k2) — o0, and

it suffices to lower bound n(|kz2| — |k1|). Since |p1 — po| > 2|p1 + p2 — 1| + Op <ﬁf;’7q)),

_ 5 (p—q)?
n(|ke| = [K1]) > ent(p — @)oilpn — p2| = 0:0 { |1 — pa| C—

n

: /
for some constant ¢, so as long as |u; — pa| > (%) .
Thus k1 + 0;K2 is growing to infinity with an order bounded below by Qp(logn).

If n(k1 + k2) > 0, since w§1) = g(n(ky+0ik2) +b;), we have () = 1¢, + Op(exp(—Q(logn))).
The case k1 + ko < 0 is similar.

O
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