
Homework Assignment 7

Due Sunday Nov 3rd by 3pm

SDS 321 Intro to Probability and Statistics

1. (4+1 pts)(Markov’s inequality:) Let X be a random variable that takes only non-
negative values.

(a) Prove that for any s > 0,

P (X ≥ s) ≤ E[X]

s
(1)

Hint: use the total expectation theorem!

E[X] = E[X|{X ≥ s}]P (X ≥ s) + E[X|{X < s}]P (X < s)︸ ︷︷ ︸
≥0 Since X ≥ 0

≥ E[X|{X ≥

s}]P (X ≥ s). But E[X|X ≥ s] ≥ s, since your conditional PMF or PDF is now
defined on all values of X which are bigger than s. So the expectation will be bigger
than s. So now we have E[X] ≥ sP (X ≥ s), and so P (X ≥ s) ≤ E[X]/s. 1
pt for using the total expectation theorem correctly. 1pt for using X ≥ 0. 1pt for
E[X|X ≥ s] ≥ s. 1pt for the last step. full points for any correct proof.

(b) You are tossing 500 biased coins, each having a probability 1/5 to come up heads.
Using the Markov inequality above, can you give an upper bound on the probability
of seeing 400 heads? X is a Binomial(500,1/5) r.v. and so E[X] = 100. P (X >
400) ≤ E[X]/400 = 100/400 = 0.25

2. (2.5+2.5 points) You have a fair coin and two biased coins. The first biased coin lands
heads with probability .3 whereas the second lands head with probability .8. You choose
one of these three coins at random and now keep tossing it until you see a head.

(a) What is the expected number of tosses until you see a head? By the law of total
expectation, we’ll take two variables: X is the number of flips until a head, Y is
the coin chosen (Y = 1 being fair, Y = 2 being biased with success probability .3,
and Y = 3 being biased with success probability .8). Given Y = i, X is a geometric
distribution with the corresponding success probability.

E[X] =
3∑

i=1

E[X|Y = i]P (Y = i)

=
1

3
(E[X|Y = 1] + E[X|Y = 2] + E[X|Y = 3])

E[X|Y = 1] =
1

1/2
= 2

E[X|Y = 2] =
1

.3
= 3.333

E[X|Y = 3] =
1

.8
= 1.25

E[X] = (2 + 3.333 + 1.25)/3 = 2.19
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(b) What is the expected number of heads in 20 tosses? This is identical to the previous
problem, except that X is now the number of heads in 20 tosses, so X|Y = i is a
binomial distribution with correpsonding success probability and n = 20:

E[X|Y = 1] = 20 · .5 = 10

E[X|Y = 3] = 20 · .3 = 6

E[X|Y = 4] = 20 · .8 = 16

E[X] =
1

3
(10 + 6 + 16) = 32/3

3. (3+1 pts) Consider the following PMF for random variables X and Y .

X
Y

1 2 P(X=x)

0 1/6 1/3 1/2
1 1/6 1/3 1/2

P(Y=y) 1/3 2/3 1

Table 1: Joint PMF of X and Y

(a) Calculate the missing values so that X and Y are independent. There may be
multiple PMFs that satisfy this. Just provide one. also P (X = 0, Y = 1) = 1/3 and
P (X = 1, Y = 0) = 1/6 works.

(b) Now compute V ar(X + Y ). V ar(X + Y ) = V ar(X) + V ar(Y ). V ar(X) = EX2 −
EX2 = 1/3+8/3− (5/3)2 = 2/9 and V ar(Y ) = 1/2− 1/4 = 1/4. So V ar(X+Y ) =
1/4 + 2/9.

4. (3+1+2 pts) (Coupon Collector problem:) There are 10 coupons of different colors
in a box. You draw one coupon at random, note its color and put it back in the box. At
any draw, each coupon is equally likely to be drawn.

(a) Say you have already seen i−1 distinct coupon colors. Now, let Xi be the number of
coupons you draw (with replacement) until you see a coupon whose color you have
not seen before. Trivially, X1 = 1, since the first coupon drawn always has a new
color. For i = 1, . . . , 10,

i. What is the distribution of Xi? After seeing i−1 colors the probability of seeing
a new color when you pick a coupon with replacement is (10 − (i − 1))/10. So
Xi ∼ geometric

(
11−i
10

)
. One point for understanding its a geometric. Two

points for the correct parameter.

ii. What is E[Xi]? E[Xi] =
10

11−i . One point for plugging into the right formula.

(b) Let Y is the total number of draws needed to see all 10 colors. Show that E[Y ] =

10
(∑10

i=1
1
i

)
. Hint: write Y in terms of Xi’s.

(c) What is E[Xi]? Y =
∑

iXi. So by linearity of expectation: E[Y ] =
∑10

i=1
10

11−i =

10
∑10

i=1
1
i . One point for understanding its a linearity of expectation problem. One

point plugging into the right form.
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