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Multiple random variables

▶ Often, we are interested in multiple random variables.

▶ These variables may be dependent or independent

▶ Recall, two random variables X and Y are independent if
For all x , y

Discrete case

pX ,Y (x , y) = pX (x)pY (y)

Continuous case

fX ,Y (x , y) = fX (x)fY (y)

▶ If pY (y) > 0 (discrete case)/fY (y) > 0 (continuous case), this gives
us a more interpretable definition

Discrete case

pX |Y (x |y) = pX (x)

Continuous case

fX |Y (x |y) = fX (x)

▶ i.e. knowing Y = y tells us nothing about X .
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Expectations and variances of functions of multiple random
variables

▶ A function Z = g(X ,Y ) of two (or more) random variables is still a
random variable.

▶ We can extend our definitions of expectation and variance to
incorporate such random variables (discrete case omitted for space):

Continuous case

E [g(X ,Y )] =

∫∫
(x ,y)

g(x , y)fX ,Y (x , y)dx dy

var(g(X ,Y )) =

∫∫
(x ,y)

(g(x , y)− E [g(X ,Y )])fX ,Y (x , y)dx dy

=E [g(X ,Y )2]− E [g(X ,Y )]2

▶ If g is a linear function, e.g. g(X ,Y ) = aX + bY + c, we have

E [aX + bY + c] = aE [X ] + bE [Y ] + c

... regardless of whether X and Y are independent
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Covariance

▶ The covariance of two random variables X and Y is given by

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])]

▶ We can simplify this a little

cov(X ,Y ) =E [(X − E [X ])(Y − E [Y ])]

=E [XY − XE [Y ]− YE [X ] + E [X ]E [Y ]

=E [XY ]− E [X ]E [Y ]− E [X ]E [Y ] + E [X ]E [Y ]

=E [XY ]− E [X ][E [Y ]

▶ It is a measure of how much X and Y change together.

▶ A positive covariance means that, if X > E [X ], we are likely to have
Y > E [Y ]

▶ A negative covariance means that, if X > E [X ], we are likely to
have Y < E [Y ].
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Covariance

▶ A positive covariance means that we have most mass in the upper
right and lower left quadrants.

▶ A negative covariance means that we have most mass in the upper
left and lower right quadrants.

▶ A zero covariance means that we have about an equal mass in the
upper left and upper right quadrants.
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Covariance

▶ We are plotting two random variables X and Y below. Which one
corresponds to a positive, negative or zero covariance?
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Covariance properties

▶ Cov(X , a) = 0 where a is a constant.

▶ Cov(aX , bY ) = abcov(X ,Y )

▶ Cov(X + Y ,Z) = Cov(X ,Z) + Cov(Y ,Z)

▶ Cov(X ,X ) = Var(X )
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Example: Discrete case
▶ I flip a fair coin 5 times. Let X = 1 if the first coin flip is heads, and

0 otherwise. Let Y be the total number of heads. What is the
correlation between X and Y ?

▶ What is E [X ]?

1/2

What is E [Y ]?

5/2

E [XY ] =
1∑

x=0

5∑
y=0

xypX ,Y (x , y) =
1∑

x=0

5∑
y=0

xypX (x)pY |X (y |x)

=
1

2

5∑
y=0

yP(Y = y |X = 1)

︸ ︷︷ ︸
conditional expectation of Y given X = 1

▶ If X = 1, then Y − 1 is a Binomial(4, 1/2) random variable. So, the
sum is just the expectation of a Binomial(4, 1/2) random variable

plus 1, i.e.
4

2
+ 1 = 3.

▶ So, E [XY ] =
3

2

▶ So, cov(X ,Y ) = E [XY ]− E [X ]E [Y ] =
3

2
− 1

2

5

2
=

1

4
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Example: Continuous case

▶ Let fX ,Y (x , y) =

{
2 0 ≤ y ≤ x ≤ 1

0 otherwise
▶ What is cov(X ,Y )?

x

y

0
0

1

1

▶ We first need to calculate the expectation of X and Y .
▶ The marginal PDF of X and Y are:

fX (x) =

∫ 1

0
fX ,Y (x , y)dy = 2

∫ x

0
dy = 2x 0 ≤ x ≤ 1

fY (y) =

∫ 1

0
fX ,Y (x , y)dx = 2

∫ 1

y
dx = 2(1− y) 0 ≤ y ≤ 1

▶ So the expectations are:

E [X ] =

∫ 1

0
2x2dx = 2/3

E [Y ] =

∫ 1

0
(2y − 2y2)dy = 1/3
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Example: Continuous case

▶ We next need to calculate E [XY ].

▶ This is just the expectation of a function of two random variables

E [XY ] =

∫ 1

0

∫ 1

0
xyfX ,Y (x , y)dxdy

=

∫ 1

x=0

∫ x

y=0
2xydx dy

=

∫ 1

x=0
x(

∫ x

y=0
2ydy) dx

=

∫ 1

x=0
x
[
y2

]x
0
dx =

∫ 1

x=0
x3dx = 1/4

▶ So, cov(X ,Y ) = E [XY ]− E [X ]E [Y ] =
1

4
− 1

3
· 2
3
=

1

36
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Covariance and Independence

▶ If two random variables are independent, knowing one tells us
nothing about the other!

▶ In this case, E [XY ] = E [X ]E [Y ]

▶ We know that cov(X ,Y ) = E [XY ]− E [X ]E [Y ]... so if two random
variables are independent, their covariance is zero.

▶ This shouldn’t be surprising... we know X can’t tell us anything
about Y .

▶ What about the converse? If cov(X ,Y ) = 0, does that mean that X

and Y are independent?

▶ Another way of asking this is, does E [XY ] = E [X ]E [Y ] imply X and
Y are independent?
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Covariance and Independence
▶ I start at co-ordinates (0,0). I pick a compass direction (N,S,E,W)

uniformly at random, and walk 1 unit in that direction.
▶ Let (X ,Y ) be my new coordinates. My sample space is

{(0, 1), (1, 0), (0,−1), (−1, 0)}.
y

x

(0,1)

(0,−1)

(1,0)(−1,0)

▶ What are E [X ] and E [Y ]?

0.

▶ XY = 0 .
▶ So, cov(X ,Y ) = 0.

▶ But, if I know X = 1, then I must have Y = 0. So, they are not
independent!

Independence implies zero correlation... but zero correlation does not
imply independence!
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imply independence!

12



Covariance and Independence
▶ I start at co-ordinates (0,0). I pick a compass direction (N,S,E,W)

uniformly at random, and walk 1 unit in that direction.
▶ Let (X ,Y ) be my new coordinates. My sample space is

{(0, 1), (1, 0), (0,−1), (−1, 0)}.
y

x

(0,1)

(0,−1)

(1,0)(−1,0)

▶ What are E [X ] and E [Y ]? 0.
▶ XY = 0 .
▶ So, cov(X ,Y ) = 0.
▶ But, if I know X = 1, then I must have Y = 0. So, they are not

independent!

Independence implies zero correlation... but zero correlation does not
imply independence!
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Correlation

▶ We know that the sign of a covariance indicates whether X − E [X ]

and Y − E [Y ] tend to have the same sign.

▶ The magnitude gives us some indication of the extent to which this
is true... but it is hard to interpret.
▶ The magnitude depends not just how much X and Y co-vary, but

also on how much X and Y deviate from their expected values.

▶ The correlation coefficient ρX ,Y (sometimes referred to as the
Pearson’s correlation coefficient) is a standardized version of the
covariance.

ρX ,Y =
cov(X ,Y )√
var(X )var(Y )

▶ We always have −1 ≤ ρX ,Y ≤ 1

▶ ρ = 0 implies zero covariance.
▶ |ρ| = 1 iff there is a linear relationship between X and Y .
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Correlation: Example of |ρ| = 1

▶ We throw a biased coin, with probability of heads p, n times. Let X

be the number of heads, and let Y be the number of tails.

▶ X = n − Y

▶ E [X ] =

np, and E [Y ] = n(1− p) = n − E [X ].

▶ var(X ) = np(1− p) = var(Y ).

▶ All possible pairs (x , y) must satisfy x + y = n = E [X ] + E [Y ] So
x − E [X ] = −(y − E [Y ])

▶ Therefore (x − E [X ])(y − E [Y ]) = −(x − E [X ])2.

▶ We know that

cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])] = −E [(X − E [X ])2] = −var(X )

▶ The correlation coefficient is therefore

ρX ,Y =
cov(X ,Y )√
var(X )var(Y )

=
−var(X )√

var(X )var(X )
= −1

▶ Remember X = n − Y , so they have a linear relationship.
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Variance of a sum of random variables
▶ Earlier in the course, we looked at the variance of the sum of

independent random variables.

▶ Let’s now consider the variance of sums of arbitrary random
variables:

var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

= E [X2 + Y 2 + 2XY ]− (E [X ]2 + E [Y ]2 + 2E [X ]E [Y ])

= E [X2]− E [X ]2︸ ︷︷ ︸
var(X )

+E [Y 2]− E [Y ]2︸ ︷︷ ︸
var(Y )

+2E [XY ]− E [X ]E [Y ]︸ ︷︷ ︸
cov(X ,Y )

= var(X ) + var(Y ) + 2cov(X ,Y )

▶ When X ,Y are independent, the variance of the sum is the sum of
variances.

▶ Can be extended to multiple random variables.

var(X + Y + Z) = var(X ) + var(Y ) + var(Z)

+ 2cov(X ,Y ) + 2cov(Y ,Z) + 2cov(X ,Z)
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Summary

▶ Expectation tells us where we expect our random variable to be, on
average.

▶ Variance is a measure of how far away from the expectation we
expect it to be.

▶ If we have two random variables, covariance is a measure of the
strength and direction of the relationship between them.

▶ It is often easier to interpret the correlation coefficient, a
standardized form of the covariance with values between -1 and 1.

▶ If X and Y are independent, their covariance is zero.

▶ However, the converse is not always true!
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