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Contingency tables

Alice says that there are more left handed women than left handed men.
Bob gives her some numbers to count probabilities.

▶ P(X = 0, L = 0) =

43/100

▶ P(X = 0, L = 1) =

7/100

▶ P(X = 1, L = 0) =

47/100

▶ P(X = 1, L = 1) =

3/100

▶ P(X = 1) =

1/2 ← Marginal probability!

▶ P(L = 1) =

10/100 ← Marginal probability!

▶ Remember! These really are estimated numbers, and hence
approximations. I am estimating the fraction of left handed men in a
population via my sample!
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Multiple random variables

So far we have been talking about single random variables and associated
PMF’s. However, often we are interested in multiple random variables.

▶ Consider two discrete random variables X , and Y associated with
the same experiment.

▶ The joint PMF of X and Y are defined as
pX ,Y (x , y) = P(X = x ,Y = y) for all pairs of values x , y X and Y

can take.

▶ This is none other than P({X = x} ∩ {Y = y}).
▶ Of course the order does not matter.
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Properties of the joint PMF

▶ Recall that if A1,A2, . . . ,AK is a partition of Ω,

P(B) = P

⋃
k

(B ∩ Ak )

 =
∑
k

P(B ∩ Ak ).

▶ {X = x} is the disjoint union of {X = x} ∩ {Y = y} for all y values Y

can take.

▶ {X = x} ∩ {Y = y} is none other than {X = x ,Y = y}
▶ We can extend this to PMFs:

∑
y

P(X = x ,Y = y) =

P(X = x)

∑
x

P(X = x ,Y = y) =

P(Y = y)

.

▶ These are also called the marginal PMF’s.

▶ So
∑
x

∑
y

P(X = x ,Y = y) =

∑
x

P(X = x) = 1

.

▶ {X = x ,Y = y} for all pairs of numerical values taken by X and Y
form a partition of the sample space.

▶ And now the normalization rule gives us the result!
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Functions of multiple random variables

▶ E(g(X ,Y )) =
∑
x ,y

g(x , y)P(X = x ,Y = y).

▶ Let g(X ,Y ) = aX + bY .

▶ E(g(X ,Y )) =
∑
x,y

(ax + by)P(X = x ,Y = y) = aE [X ] + bE [Y ].

▶ What if g(X ,Y ) = aX2 + bY 2 + c?

▶ E [g(X ,Y )] = aE [X 2] + bE [Y 2] + c

▶ Common Mistake: E [g(X ,Y )] ̸= g(E [X ],E [Y ])! unless g is linear
in X and Y !
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Multiple random variables

How about three random variables?

▶ We will write pX ,Y ,Z (x , y , z) = P(X = x ,Y = y ,Z = z)

▶ The rules are the same:

▶ P(X = x ,Y = y) =
∑
z

P(X = x ,Y = y ,Z = z).

▶ P(X = x) =
∑
y,z

P(X = x ,Y = y ,Z = z).

▶ P(Y = y) =
∑
x,z

P(X = x ,Y = y ,Z = z).

▶ P(Z = z) =
∑
x,y

P(X = x ,Y = y ,Z = z).

▶
∑
x,y,z

P(X = x ,Y = y ,Z = z) = 1.

▶ Generalizes easily to more than 3 random variables.
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Linearity of expectation

Perhaps one of the most useful and powerful results!

▶ E [aX + bY + cZ + d ] = aE [X ] + bE [Y ] + cE [Z ] + d

▶ More generally,

E [a1X1 + a2X2 + · · ·+ anXn] = a1E [X1] + a2E [X2] + . . . anE [Xn]

▶ This is extremely general! X1, . . . ,Xn do not have to be mutually
independent for this to hold!

▶ This generalizes to E

∑
i

ai f (Xi )

 =
∑
i

aiE [f (Xi )], as long as the

expectations are well defined.
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Expectation of Y ∼ Binomial(n, p)

Remember that a Binomial(n, p) random variable is nothing other than
the sum of n independent Bernoulli’s!

▶ Y =
n∑

i=1

Xi , where Xi ∼ Bernoulli(p).

▶ We know that E [Xi ] = p.

▶ Using our newfound tool, we have:

E [Y ] = E [
∑
i

Xi ] =
∑
i

E [Xi ] = np.

▶ We do not need the mutual independence of the Bernoullis to get
this result!
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Balls and bins

I am throwing m distinguishable balls into n distinguishable bins. What is
the expected number of empty bins (call this Y )? Every ball has to hit a
bin and a bin can have multiple balls.

▶ Let Xi =

{
1 The ith bin is empty

0 Otherwise

▶ We want E [Y ].

▶ E [Y ] =

E [
∑
i

Xi ] =
∑
i

E [Xi ]

▶ E [Xi ] =

P(No ball falls in bin i) = (1− 1/n)m

▶ E [Y ] = n(1− 1/n)m

▶ When m = n, for large n, E [Y ] = n(1− 1/n)n ≈ n/e.
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Conditional PMF

So we have started thinking about how knowing about one random
variable alters out belief about another random variable. This brings us
to conditional PMFs!

▶ The conditional PMF of a random variable X , conditioned on a
particular event A with P(A) > 0, is defined by:

pX |A(x) = P(X = x |A) = P({X = x} ∩ A)

P(A)

▶ So we have∑
x

P(X = x |A) =
∑
x

P({X = x} ∩ A)

P(A)
=

∑
x P({X = x} ∩ A)

P(A)

▶ But A can be written as a disjoint union of the events {X = x} ∩ A

for all numerical values X takes.

▶ Total probability rule gives: P(A) =
∑
x

P({X = x} ∩ A), and so∑
x

P(X = x |A) = 1.
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Conditioning one random variable on another

Let X and Y be two random variables associated with the same
experiment. Now the knowledge of Y = y for some particular value y

provides us with partial knowledge about what value X may take.

▶ The conditional PMF of X given Y is given by
pX |Y (x , y) = P(X = x |{Y = y}).

▶ Using the same set of rules as before we can write:

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
=

pX ,Y (x , y)

pY (y)

▶ For any fixed y such that P(Y = y) > 0, we also have:∑
x

P(X = x |Y = y) = 1.

▶ So, a conditional PMF satisfies the properties of a PMF.
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Conditional PMF

Bob and Alice are interested in finding out the conditional probability of
being left handed given a person is a man. Bob finds his data again.

▶ P(L = 1|X = 0) is just the fraction of all men who are left handed

▶ P(L = 1|X = 0) = 7/50.

▶ Let us plug in the formula. P(L = 1,X = 0) =

7/100

.

▶ P(X = 0) = 50/100. So
P(L = 1,X = 0)

P(X = 0)
= 7/50.

▶ What is P(L = 0|X = 0)? Its just the fraction of all men who are
right handed! So 43/50.

▶ P(L = 0|X = 0) + P(L = 1|X = 0) = 1!
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Conditional PMF

▶ Remember that a conditional PMF is a valid PMF.

▶ Since P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
, we also have the

multiplication rule:
▶ P(X = x ,Y = y) = P(X = x |Y = y)P(Y = y)

▶ But P(X = x ,Y = y) = P(Y = y ,X = x), and so we also have:
P(X = x ,Y = y) = P(Y = y |X = x)P(X = x).

▶ Same as multiplication rule from before!

▶ We can also draw trees to get conditional probabilities!
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Independence of random variables

▶ Lets first consider two events {X = x} and A. We know that these
two events are independent if P({X = x},A) = P({X = x})P(A)

▶ In other words if P(A) > 0, then P(X = x |A) = P(X = x), i.e.
knowing the occurrence of A does not change our belief about
{X = x}.

▶ We will call the random variable X and event A to be independent if

P(X = x ,A) = P(X = x)P(A) For all x

▶ Two random variables are said to be independent if

P(X = x ,Y = y) = P(X = x)P(Y = y) For all x and y

▶ To put it a bit differently,

P(X = x |Y = y) = P(X = x) For all x and y such that P(Y = y) > 0

14



A super important implication

We saw that E [X + Y ] = E [X ] + E [Y ] no matter whether X and Y are
independent or not.

▶ If X and Y are independent, E [XY ] = E [X ]E [Y ]

▶ E [XY ] =
∑
x ,y

xyP(X = x ,Y = y) =
∑
x ,y

xyP(X = x)P(Y = y)

=

(∑
x

xP(X = x)

)∑
y

yP(Y = y)

 = E [X ]E [Y ]

▶ In fact, E [g(X )h(Y )] = E [g(X )]E [h(Y )]
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Variance of sum of independent random variables

Let X and Y be two independent random variables. What is var(X +Y )?

▶ Remember! var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

▶ E [(X + Y )2] = E [X2 + Y 2 + 2XY ] = E [X2] + E [Y 2] + 2E [XY ]

= E [X2] + E [Y 2] + 2E [X ]E [Y ]

E [X + Y ]2 = (E [X ] + E [Y ])2 = E [X ]2 + E [Y ]2 + 2E [X ]E [Y ]

var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

= E [X2]− E [X ]2︸ ︷︷ ︸
var(X )

+E [Y 2]− E [Y ]2︸ ︷︷ ︸
var(Y )

= var(X ) + var(Y )

▶ Variance of sum of independent random variables equals the sum of
the variances!
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= E [X2] + E [Y 2] + 2E [X ]E [Y ]

E [X + Y ]2 = (E [X ] + E [Y ])2 = E [X ]2 + E [Y ]2 + 2E [X ]E [Y ]

var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

= E [X2]− E [X ]2︸ ︷︷ ︸
var(X )

+E [Y 2]− E [Y ]2︸ ︷︷ ︸
var(Y )

= var(X ) + var(Y )

▶ Variance of sum of independent random variables equals the sum of
the variances!

16



Variance of sum of independent random variables

Let X and Y be two independent random variables. What is var(X +Y )?

▶ Remember! var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

▶ E [(X + Y )2] = E [X2 + Y 2 + 2XY ] = E [X2] + E [Y 2] + 2E [XY ]

= E [X2] + E [Y 2] + 2E [X ]E [Y ]

E [X + Y ]2 = (E [X ] + E [Y ])2 = E [X ]2 + E [Y ]2 + 2E [X ]E [Y ]

var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

= E [X2]− E [X ]2︸ ︷︷ ︸
var(X )

+E [Y 2]− E [Y ]2︸ ︷︷ ︸
var(Y )

= var(X ) + var(Y )

▶ Variance of sum of independent random variables equals the sum of
the variances!

16



Variance of sum of independent random variables

Let X and Y be two independent random variables. What is var(X +Y )?

▶ Remember! var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

▶ E [(X + Y )2] = E [X2 + Y 2 + 2XY ] = E [X2] + E [Y 2] + 2E [XY ]

= E [X2] + E [Y 2] + 2E [X ]E [Y ]

E [X + Y ]2 = (E [X ] + E [Y ])2 = E [X ]2 + E [Y ]2 + 2E [X ]E [Y ]

var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

= E [X2]− E [X ]2︸ ︷︷ ︸
var(X )

+E [Y 2]− E [Y ]2︸ ︷︷ ︸
var(Y )

= var(X ) + var(Y )

▶ Variance of sum of independent random variables equals the sum of
the variances!

16



Independence of several random variables

▶ Three random variables X , Y and Z are said to be independent if

P(X = x ,Y = y ,Z = z) = P(X = x)P(Y = y)P(Z = z) For all x , y , z

▶ If X , Y , Z are independent, then so are f (X ), g(Y ) and h(Z).

▶ Also, any random variable f (X ,Y ) and g(Z) are independent.

▶ Are f (X ,Y ) and g(Y ,Z) independent?

▶ Not necessarily, both have Y in common.

▶ For n independent random variables, X1, X2, . . . ,Xn, we also have:

var(X1 + X2 + X3 + · · ·+ Xn) = var(X1) + var(X2) + · · ·+ var(Xn)
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Variance of a Binomial

Consider n independent Bernoulli variables X1,X2, . . . ,Xn, each with
probability p of having value “1”. The sum Y =

∑
i

Xi is a Binomial(n, p)

random variable.

▶ We saw last time that E [Y ] =
∑
i

E [Xi ] = np. What about the

variance?

▶ Recall that var(Xi ) = p(1− p) for i ∈ {1, 2, . . . , n}.

▶ var(Y ) = var(X1 + X2 + · · ·+ Xn) =
n∑

i=1

var(Xi ) = np(1− p).
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Conditional Independence

▶ Very similar to conditional independence of events!

▶ X and Y are conditionally independent, given a positive probability
event A if

P(X = x ,Y = y |A) = P(X = x |A)P(Y = y |A) For all x and y

▶ Same as saying P(X = x |Y = y ,A) = P(X = x |A), i.e.
▶ Once you know that A has occurred, knowing {Y = y} has occurred

does not give you any more information!

▶ Like we learned before, conditional independence does not imply
unconditional independence.
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Example-conditionally independent but not marginally

▶ I have two coins, one biased (p = .9) and one fair (p = .5).

▶ I pick a coin a random.

▶ I toss that twice. Let X1 = 1 if the first toss is a head, and X2 = 1 if
the second toss is a head.

▶ Are X1,X2 marginally independent?

▶ Are they conditionally independent?
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Example-marginally independent but not conditionally

▶ I toss two dice independently and X and Y are the readings on them.

▶ Are X and Y independent?

▶ Now I tell you that X + Y = 12. Are they still independent?
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