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Conditional PMF: summary
▶ Conditional PMF is exactly like conditional probabilities. Your new

sample space is one where the conditioning event has taken place.

▶ By definition, we have P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)
, where

P(Y = y) > 0.

▶
∑
x

P(X = x |Y = y) = 1.

▶ The multiplication rule:

▶ P(X = x ,Y = y) = P(X = x |Y = y)P(Y = y).

▶ For 3 random variables, P(X = x ,Y = y ,Z = z) equals
P(X = x |Y = y ,Z = z)P(Y = y |Z = z)P(Z = z)

▶ Total probability rule:
P(X = x) =

∑
y

P(X = x ,Y = y) =
∑
y

P(X = x |Y = y)P(Y = y).
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Conditional Expectation

▶ Recall the expectation of X . E [X ] =
∑
x

xP(X = x).

▶ The conditional expectation of random variable X given event A

with P(A) > 0 is defined as: E [X |A] =
∑
x

xP(X = x |A).

▶ For a function g(X ), E [g(X )|A] =
∑
x

g(x)P(X = x |A).

▶ The conditional expectation of X given Y = y is given by
E [X |Y = y ] =

∑
x

xP(X = x |Y = y).

▶ How are E [X |Y = y ] related to E [X ]?

—Total expectation theorem!
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Total expectation theorem

▶ We have E [X |Y = y ]P(Y = y) =
∑
x

xP(X = x |Y = y)P(Y = y)

∑
y

E [X |Y = y ]P(Y = y) =
∑
y

∑
x

xP(X = x |Y = y)P(Y = y)

∑
y

E [X |Y = y ]P(Y = y) =
∑
y

∑
x

x P(X = x |Y = y)P(Y = y)︸ ︷︷ ︸
P(X=x ,Y=y)

=
∑
x

x
∑
y

P(X = x |Y = y)P(Y = y)

︸ ︷︷ ︸
P(X=x)

=
∑
x

xP(X = x)

= E [X ]

▶ So E [X ] is just a weighted average of E [X |Y = y ], the weights being the
probability of Y = y .
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Roadmap - discrete r.v. - independence

▶ Independence of two events

▶ Independence of a random variable and an event

▶ Independence of two random variables–pairwise independence
▶ Implications – expectation of the product of two independent r.v’s
▶ Implications – variance of the sum of two independent r.v.’s

▶ Generalization to multiple random variables
▶ Implication – variance of a binomial

▶ Conditional independence
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Independence of random variables

▶ Lets first consider two events {X = x} and A. We know that these
two events are independent if P({X = x},A) = P({X = x})P(A)

▶ In other words if P(A) > 0, then P(X = x |A) = P(X = x), i.e.
knowing the occurrence of A does not change our belief about
{X = x}.

▶ We will call the random variable X and event A to be independent if

P(X = x ,A) = P(X = x)P(A) For all x

▶ Two random variables are said to be independent if

P(X = x ,Y = y) = P(X = x)P(Y = y) For all x and y

▶ To put it a bit differently,

P(X = x |Y = y) = P(X = x) For all x and y such that P(Y = y) > 0
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A super important implication

We saw that E [X + Y ] = E [X ] + E [Y ] no matter whether X and Y are
independent or not.

▶ If X and Y are independent, E [XY ] = E [X ]E [Y ]

▶ E [XY ] =
∑
x ,y

xyP(X = x ,Y = y) =
∑
x ,y

xyP(X = x)P(Y = y)

=

(∑
x

xP(X = x)

)∑
y

yP(Y = y)

 = E [X ]E [Y ]

▶ In fact, E [g(X )h(Y )] = E [g(X )]E [h(Y )]
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Variance of sum of independent random variables

Let X and Y be two independent random variables. What is var(X +Y )?

▶ Remember! var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

▶ E [(X + Y )2] = E [X2 + Y 2 + 2XY ] = E [X2] + E [Y 2] + 2E [XY ]

= E [X2] + E [Y 2] + 2E [X ]E [Y ]

E [X + Y ]2 = (E [X ] + E [Y ])2 = E [X ]2 + E [Y ]2 + 2E [X ]E [Y ]

var(X + Y ) = E [(X + Y )2]− (E [X + Y ])2

= E [X2]− E [X ]2︸ ︷︷ ︸
var(X )

+E [Y 2]− E [Y ]2︸ ︷︷ ︸
var(Y )

= var(X ) + var(Y )

▶ Variance of sum of independent random variables equals the sum of
the variances!
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Independence of several random variables

▶ Three random variables X , Y and Z are said to be independent if

P(X = x ,Y = y ,Z = z) = P(X = x)P(Y = y)P(Z = z) For all x , y , z

▶ If X , Y , Z are independent, then so are f (X ), g(Y ) and h(Z).

▶ Also, any random variable f (X ,Y ) and g(Z) are independent.

▶ Are f (X ,Y ) and g(Y ,Z) independent?

▶ Not necessarily, both have Y in common.

▶ For n independent random variables, X1, X2, . . . ,Xn, we also have:

var(X1 + X2 + X3 + · · ·+ Xn) = var(X1) + var(X2) + · · ·+ var(Xn)
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Variance of a Binomial

Consider n independent Bernoulli variables X1,X2, . . . ,Xn, each with
probability p of having value “1”. The sum Y =

∑
i

Xi is a Binomial(n, p)

random variable.

▶ We saw last time that E [Y ] =
∑
i

E [Xi ] = np. What about the

variance?

▶ Recall that var(Xi ) = p(1− p) for i ∈ {1, 2, . . . , n}.

▶ var(Y ) = var(X1 + X2 + · · ·+ Xn) =
n∑

i=1

var(Xi ) = np(1− p).
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Conditional Independence

▶ Very similar to conditional independence of events!

▶ X and Y are conditionally independent, given a positive probability
event A if

P(X = x ,Y = y |A) = P(X = x |A)P(Y = y |A) For all x and y

▶ Same as saying P(X = x |Y = y ,A) = P(X = x |A), i.e.
▶ Once you know that A has occurred, knowing {Y = y} has occurred

does not give you any more information!

▶ Like we learned before, conditional independence does not imply
unconditional independence.
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Example-conditionally independent but not marginally

▶ I separately phone two students (Alice and Bob) and tell them the
midterm grade.

▶ To each, I report the same grade, G ∈ {A+,A...,C}.
▶ The signal is bad and, Alice and Bob each independently make an

educated guess of what I said.

▶ Let the grades guessed by Alice and Bob be X and Y .

▶ Are X and Y marginally independent?

▶ NO. you would think, P(X = A|Y = A) > P(X = A).

▶ What if I tell you that G = A−?

▶ Are X and Y conditionally independent given {G = A}.
▶ YES! Because if we know the grade I actually said, the two variables

are no longer dependent.
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Example-marginally independent but not conditionally

▶ I toss two dice independently and X and Y are the readings on them.

▶ Are X and Y independent?

▶ Now I tell you that X + Y = 12. Are they still independent?
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Cumulative distribution function

▶ I toss two dice independently and X and Y are the readings on them.

▶ Are X and Y independent?

▶ Now I tell you that X + Y = 12. Are they still independent?
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Roadmap

▶ Discrete vs continuous random variables

▶ Probability mass function vs Probability density function
▶ Properties of the pdf

▶ Cumulative distribution function
▶ Properties of the cdf

▶ Expectation, variance and properties

▶ The normal distribution
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Review: Random variables

A random variable is mapping from the sample space Ω into the real
numbers.

So far, we’ve looked at discrete random variables, that can take a
finite, or at most countably infinite, number of values, e.g.

▶ Bernoulli random variable – can take on values in {0, 1}.
▶ Binomial(n, p) random variable – can take on values in {0, 1, . . . , n}.
▶ Geometric(p) random variable – can take on any positive integer.
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Continuous random variable

A continuous random variable is a random variable that:

▶ Can take on an uncountably infinite range of values.

▶ For any specific value X = x, P(X = x) = 0.

Examples might include:

▶ The time at which a bus arrives.

▶ The volume of water passing through a pipe over a given time
period.

▶ The height of a randomly selected individual.
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Probability mass function
Remember for a discrete random variable X , we could describe the
probability of X a particular value using the probability mass function.

▶ e.g. if X ∼ Poisson(λ), then the PMF of X is pX (k) =
λke−λ

k!
▶ We can read off the probability of a specific value of k from the

PMF.

▶ We can use the PMF to calculate the expected value and the
variance of X .

▶ We can plot the PMF using a histogram
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Probability density function
▶ For a continuous random variable, we cannot construct a PMF –

each specific value has zero probability.

▶ Instead, we use a continuous, non-negative function fX (x) called the
probability density function, or PDF, of X .

▶ The probability of X lying between two values x1 and x2 is simply
the area under the PDF, i.e.

P(a ≤ X ≤ b) =

∫ b

a
fX (x)dx
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Probability density function
▶ More generally, for any subset B of the real line,

P(X ∈ B) =

∫
B
fX (x)dx

▶ Here, B = (−4,−2) ∪ (3, 6).
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Properties of the pdf

▶ Note that fX (a) is not P(X = a)!!

▶ For any single value a, P(X = a) =

∫ a

a
fX (x)dx = 0.

▶ This means that, for example,
P(X ≤ a) = P(X < a) + P(X = a) = P(X < a).

▶ Recall that a valid probability law must satisfy P(Ω) = 1 and
P(A) > 0.

▶ fX is non-negative, so P(x ∈ B) =

∫
x∈B

fX (x)dx ≥ 0 for all B

▶ To have normalization, we require,

▶
∫ ∞

−∞
fX (x) = P(−∞ < X <∞) = 1 ← total area under curve is 1.

▶ Note that fX (x) can be greater than 1 – even infinite! – for certain
values of x, provided the integral over all x is 1.
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Intuition

▶ We can think of the probability of our random variable lying in some
small interval of length δ, [x , x + δ]

▶ P(X ∈ [x , x + δ]) =

∫ x+δ

x
fX (t)dt ≈ fX (x) · δ

▶ Note however that fX (x) is not the probability at x.
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Example: Continuous uniform random variable

▶ I know a bus is going to arrive some time in the next hour, but I
don’t know when. If I assume all times within that hour are equally
likely, what will my PDF look like?

fX (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.
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Example: Continuous uniform random variable

fX (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

▶ What is P(X > 0.5)?

0.5

▶ What is P(X > 1.5)?

0

▶ What is P(X = 0.7)?

0

24



Example: Continuous uniform random variable

fX (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

▶ What is P(X > 0.5)? 0.5

▶ What is P(X > 1.5)?

0

▶ What is P(X = 0.7)?

0

24



Example: Continuous uniform random variable

fX (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

▶ What is P(X > 0.5)? 0.5

▶ What is P(X > 1.5)? 0

▶ What is P(X = 0.7)?

0

24



Example: Continuous uniform random variable

fX (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

▶ What is P(X > 0.5)? 0.5

▶ What is P(X > 1.5)? 0

▶ What is P(X = 0.7)? 0

24



Continuous uniform random variable

▶ More generally, X is a continuous uniform random variable if it
has PDF

fX (x) =

{
c if a ≤ x ≤ b

0 otherwise.

▶ What is c?

▶ Well first lets see what

∫ b

a

fX (x)dx is!

▶ This is just the area under the curve, i.e. (b − a)× c...
▶ But we want this to be 1. So c is

c = 1/(b − a)
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Cumulative distribution function

▶ Often we are interested in P(X ≤ x)

▶ For example,
▶ What is the probability that the bus arrives before 1:30?
▶ What is the probability that a randomly selected person is under

5’7”?
▶ What is the probability that this month’s rainfall is less than 3in?

▶ We can get this from our PDF:

FX (x) = P(X ≤ x) =



∑
x ′≤x

pX (x) if X is a discrete r.v.

∫ x

∞
fX (x ′)dx ′ if X is a continuous r.v.

▶ This is called the cumulative distribution function (CDF) of X.

▶ Note: If we know P(X ≤ x), we also know P(X > x)
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Cumulative distribution function

▶ If X is discrete, FX (x) is a piecewise-constant function of x.

▶ FX (x) =
∑
x ′≤x

pX (x ′)
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Cumulative distribution function

▶ The CDF is monotonically non-decreasing:

if x ≤ y , then FX (x) ≤ FX (y)

▶ FX (x)→ 0 as x → −∞
▶ FX (x)→ 1 as x →∞
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Cumulative distribution function

▶ If X is continuous, FX (x) is a continuous function of x

▶ FX (x) =

∫ x

t=−∞
fX (t)dt
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Expectation of a continuous random variable

▶ For discrete random variables, we found

E [X ] =
∑
x

xpX (x)

▶ We can also think of the expectation of a continuous random
variable – the number we would expect to get, on average, if we
repeated our experiment infinitely many times.

▶ What do you think the expectation of a continuous random variable
is?

▶ E [X ] =

∫ ∞

−∞
xfX (x)dx

▶ Similar to the discrete case... but we are integrating rather than
summing

▶ Just as in the discrete case, we can think of E [X ] as the “center of
gravity” of the PDF.
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Expectation of functions of a continuous random variable
▶ What do you think the expectation of a function g(X ) of a

continuous random variable is?

▶ Again, similar to the discrete case...

▶ E [g(X )] =

∫ ∞

−∞
g(x)fX (x)dx

▶ Note, g(X ) can be a continuous random variable, e.g. g(X ) = X2, or
a discrete random variable, e.g.

g(X ) =

{
1 if X ≥ 0

0 if X < 0

▶ We can use the first and second moment to calculate the variance of
X ,

var[X ] = E [X2]− E [X ]2

▶ We can also use our results for expectations and variances of linear
functions:

E [aX + b] = aE [X ] + b

var(aX + b) = a2var(X )
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Mean of a uniform random variable

Let X be a uniform random variable over [a, b]. What is its expected
value?

▶ E [X ] =

∫ ∞

−∞
xfX (x)dx

▶ fX (x) =


0 x < a

1

b − a
a ≤ x ≤ b

0 x > b

▶ So, E [X ] =

∫ a

−∞
x × 0dx +

∫ b

a

x

b − a
dx +

∫ ∞

b
x × 0dx

=

∫ b

a

x

b − a
dx

=

[
x2

2(b − a)

]b
a

=
1

2(b − a)
(b2 − a2) =

(a+ b)(b − a)

2(b − a)
=

a+ b

2
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Variance of a uniform random variable

To calculate the variance, we need to calculate the second moment:

E [X2] =

∫ ∞

−∞
x2fX (x)dx

=

∫ b

a

x2

b − a
dx

=

[
x3

3(b − a)

]b
a

=
b3 − a3

3(b − a)
=

a2 + ab + b2

3

So, the variance is

var(X ) = E [X2]− E [X ]2 =
a2 + ab + b2

3
− (a+ b)2

4
=

(b − a)2

12
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The normal distribution

▶ A normal, or Gaussian, random variable is a continuous random
variable with PDF

fX (x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ and σ are scalars, and σ > 0.

▶ We write X ∼ N(µ, σ2).

▶ The mean of X is µ, and the variance is σ2 (how could we show
this?)
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The normal distribution

▶ The normal distribution is the classic “bell-shaped curve”.

▶ It is a good approximation for a wide range of real-life phenomena.
▶ Stock returns.
▶ Molecular velocities.
▶ Locations of projectiles aimed at a target.

▶ Further, it has a number of nice properties that make it easy to work
with. Like symmetry. In the above picture, P(X ≥ 2) = P(X ≤ −2).
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Linear transformations of normal distributions

▶ Let X ∼ N(µ, σ2)

▶ Let Y = aX + b

▶ What are the mean and variance of Y ?

▶ E [Y ] = aµ+ b

▶ var[Y ] = a2σ2.

▶ In fact, if Y = aX + b, then Y is also a normal random variable, with
mean aµ+ b and variance a2σ2:

Y ∼ N(aµ+ b, a2σ2)
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The normal distribution
▶ Example: Below are the pdfs of X1 ∼ N(0, 1), X2 ∼ N(3, 1), and

X3 ∼ N(0, 16).
▶ Which pdf goes with which X?

−8 −6 −4 −2 0 2 4 6 8
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The standard normal

▶ I tell you that, if X ∼ N(0, 1), then P(X < −1) = 0.159.

▶ If Y ∼ N(1, 1), what is P(Y < 0)?

▶ Well we need to use the table of the Standard Normal.

▶ How do I transform Y such that it has the standard normal
distribution?

▶ We know that a linear function of a normal random variable is also
normally distributed!

▶ Well Z = Y − 1 has mean zero and variance 1.

▶ So P(Y < 0) = P(Z − 1 < −1) = P(X < −1) = 0.159.
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The standard normal

▶ If Y ∼ N(0, 4), what value of y satisfies P(Y < y) = 0.159?

▶ The variance of Y is 4 times that of a standard normal random
variable.

▶ Transform into a N(0, 1) random variable!

▶ Use Z = Y /2...Now Z ∼ N(0, 1).

▶ So, if P(Y < y) = P(2Z < y) = P(Z < y/2).

▶ We want y such that P(Z < y/2) = 0.159. But we know that
P(Z < −1) = 0.159, so?

▶ So y/2 = −1 and as a result y = −2...!
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The standard normal

▶ It is often helpful to map our normal distribution with mean µ and
variance σ2 onto a normal distribution with mean 0 and variance 1.

▶ This is known as the standard normal

▶ If we know probabilities associated with the standard normal, we can
use these to calculate probabilities associated with normal random
variables with arbitary mean and variance.

▶ If X ∼ N(µ, σ2), then Z =
x − µ

σ
∼ N(0, 1).

▶ (Note, we often use the letter Z for standard normal random
variables)
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The standard normal

▶ The CDF of the standard normal is denoted Φ:

Φ(z) = P(Z ≤ z) = P(Z < z) =
1√
(2π)

∫ z

−∞
e−t2/2dt

▶ We cannot calculate this analytically.

▶ The standard normal table lets us look up values of Φ(y).

.00 .01 .02 0.03 0.04 · · ·
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 · · ·
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 · · ·
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 · · ·
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 · · ·
...

...
...

...
...

...

P(Z < 0.21) = 0.5832
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CDF of a normal random variable

If X ∼ N(3, 4), what is P(X < 0)?

▶ First we need to standardize:

Z =
X − µ

σ
=

X − 3

2

▶ So, a value of x = 0 corresponds to a value of z = −1.5
▶ Now, we can translate our question into the standard normal:

P(X < 0) = P(Z < −1.5) = P(Z ≤ −1.5)

▶ Problem... our table only gives Φ(z) = P(Z ≤ z) for z ≥ 0.

▶ But, P(Z ≤ −1.5) = P(Z ≥ 1.5), due to symmetry.

▶ Our table only gives us “less than” values.

▶ But, P(Z ≥ 1.5) = 1− P(Z < 1.5) = 1− P(Z ≤ 1.5) = 1− Φ(1.5).

▶ And we’re done!
P(X < 0) = 1− Φ(1.5) = (look at the table...)1− 0.9332 = 0.0668
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Recap

▶ With continuous random variables, any specific value of X = x has
zero probability.

▶ So, writing a function for P(X = x) – like we did with discrete
random variables – is pretty pointless.

▶ Instead, we work with PDFs fX (x) – functions that we can integrate
over to get the probabilities we need.

P(X ∈ B) =

∫
B
fX (x)dx

▶ We can think of the PDF fX (x) as the “probability mass per unit
area” near x.

▶ We are often interested in the probability of X ≤ x for some x – we
call this the cumulative distribution function FX (x) = P(X ≤ x).

▶ Once we know fX (x), we can calculate expectations and variances of
X .
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