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Roadmap

▶ Continuous random variables

▶ PDF, CDF, Expectation, Variance

▶ Common distributions
▶ The Uniform
▶ The exponential
▶ The normal distribution
▶ Operations which preserve normality
▶ Standardization

▶ Multiple random variables: joint distributions

▶ Joint pdf
▶ Joint pdf to a single pdf: Marginalization
▶ Conditional pdf
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Multiple random variables

We can also have multiple continuous random variables associated with
the same experiment/sample space.

▶ For example, our experiment might be selecting a randomly selected
person.

▶ The sample space would be the set of all possible characteristics of
this person.

▶ We can summarize these characteristics into continuous random
variables, e.g.
▶ The person’s height
▶ The person’s weight
▶ The person’s age

▶ Again, multiple random variables stemming from the same sample
space!

▶ These random variables will often depend on each other: Knowing a
person is taller than 6’5” tells us something about their expected
weight.
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Multiple continuous random variables

▶ Let X and Y be two continuous random variables.

▶ Each one takes on values on the real line, i.e. X ∈ R and Y ∈ R.
▶ Together, each possible pair of values describe a point in the real

plane, i.e. (X ,Y ) ∈ R2.

▶ We say X and Y are jointly continous if the probability of them
jointly taking on values in some subset B of the plane can be
described as

P((X ,Y ) ∈ B) =

∫∫
(x ,y)∈B

fX ,Y (x , y)dx dy

using some continuous function fX ,Y , for all B ∈ R2 – i.e. all subsets
of the 2-D plane.

▶ Notation means “integrate over all values of x and y s.t. (x , y) ∈ B
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Joint PDF

▶ We call fX ,Y the joint pdf of X and Y .

▶ It allows us to calculate the probability of any set of combinations of
X and Y

▶ e.g. the probability that a person weighs over 200lb and is under 6’
▶ e.g. the probability that a person’s height in inches is more than

twice their weight in pounds.

▶ So, this could describe the first scenario above,
P(200 ≤ X ≤ ∞,−∞ ≤ Y ≤ 6)

▶ What is
∫ ∞

x=−∞

∫ ∞

y=−∞
fX ,Y (x , y)dx dy?

1
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Joint PDF: Intuition

▶ Remember we could think of fX (x) as the “probability mass per unit
length” near to x?

▶ Because fX (x) =
P(x ≤ X ≤ x + δ)

δ
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Joint PDF: Intuition

y
y + δ

x

x x
+

δ

▶ We can think of the joint PDF fX ,Y (x , y) as the “probability mass
per unit area” for a small area near X .

▶ Again, remember, fX ,Y (x , y) is not a probability!
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Multiple random variables to a single random variable

▶ We can get from the joint PMF of X and Y to the marginal PMF
of X by summing over (marginalizing over) Y :

pX (x) =
∑
y

pX ,Y (x , y)

▶ We can get from the joint PDF of X and Y to the marginal PDF
of X by integrating over (marginalizing over) Y :

fX (x) =

∫ ∞

−∞
fX ,Y (x , y)dy

8



Example: Bivariate uniform random variable

▶ Anita (X ) and Benjamin (Y ) both pick a number between 0 and 10,
according to a continuous uniform distribution. What is fX ,Y (x , y)?

▶ Let’s see... we know all pairs (x , y) are equally likely, so we know

fX ,Y = c. It must satisfy
∫ 10

x=0

∫ 10

y=0
fX ,Y (x , y)dx dy = 1.

▶ So, c
∫ 10

x=0

∫ 10

y=0
dx dy︸ ︷︷ ︸

100

= 1...

▶ So c = fX ,Y (x , y) = 0.01 for all 0 ≤ x , y ≤ 10.
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Example: marginal PDF

▶ fX ,Y (x , y) =

{
0.01 If x , y ∈ [0, 10]

0 otherwise

▶ What is fX (x)?

▶ fX (x) =


∫ 10

y=0
0.01dy = 0.1 If x ∈ [0, 10]

0 otherwise

▶ Not surprisingly X ∼ Uniform([0, 10]) and Y ∼ Uniform([0, 10]).

▶ In general, we will have fX (x) =

∫ ∞

−∞
fX ,Y (x , y)dy

▶ We have marginalized out one of our random variables... just like
we did when looking at PMFs.

▶ We call fX (x) the marginal PDF of X
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Example: marginalization

▶ What is the probability that Anita picks a number greater than 7?

Anita

B
en
ja
m
in

0
0

10

10

7

▶ That’s going to correspond to the shaded region...
P(X > 7) = 0.01(3× 10) = 0.3.

▶ Or, using calculus:
∫ 10

x=7

∫ 10

y=0
fX ,Y (x , y)dx dy
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Marginalization

X

B

0
0

10

10

7

▶ P(X > 7) =

∫ 10

x=7

∫ 10

y=0
fX ,Y (x , y)dx dy

▶ But, this doesn’t depend on Benjamin at all! It is the same as

P(X > 7) =

∫
x>7

fX (x)dx.
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Example: Uniform random variable

▶ What is the probability that they both pick numbers less than 4?

Anita

B
en
ja
m
in

0
0

10

10

4

4

▶ It will be 0.01

∫ 4

0

∫ 4

0
dx dy = 0.01× 16 = 0.16

– i.e. 0.01 × the shaded area.
– Or 16/100!

13



Example: Uniform random variable

▶ What is the probability that they both pick numbers less than 4?

Anita

B
en
ja
m
in

0
0

10

10

4

4

▶ It will be 0.01

∫ 4

0

∫ 4

0
dx dy = 0.01× 16 = 0.16

– i.e. 0.01 × the shaded area.
– Or 16/100!

13



Example: Uniform random variable
▶ What is the probability that Benjamin picks a number at least twice that of Anita?

Anita
B
en
ja
m
in

0
0

10

10

5

▶ That’s going to correspond to the shaded region...
P(Y ≥ 2X ) = 0.01(0.5× 5× 10) = 0.25.

▶ Or, using calculus:
∫ 10

x=0

∫ 10

y=2x
fX ,Y (x , y)dx dy =

∫ 10

x=0

∫ 10

y=2x
c × 10≤x≤10,0≤y≤10dx dy

▶

∫ 10

x=0

∫ 10

y=2x
c × 10≤2x≤10dx dy = c

∫ 5

0
dx = c

∫ 5

x=0
(10− 2x)dx

= c(10× 5− (52 − 0)) = 0.01× 25 = 0.25
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Conditional PDFs

▶ For discrete random variables, we looked at marginal PMFs pX (X ),
conditional PMFs pX |Y (x |y), and joint PMFs pX ,Y (x , y).

▶ These corresponded to the probability of an event, P(A), the
conditional probability of an event given some other event, P(A|B),
and probability of the intersection of two events, P(A ∩ B).

▶ We’ve looked at marginal PDFs, fX (x) and joint PDFs, fX ,Y (x , y).

▶ These don’t directly give us probabilities of events, but we can use
them to calculate such probabilities by integration.

▶ We can also look at conditional PDFs! These allow us to calculate
the probability of events given extra information.
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Conditional PDFs
▶ Recall, the PDF of a continuous random variable X is the

non-negative function fX (x) that satisfies

P(X ∈ B) =

∫
B
fX (x)dx

for any subset B of the real line.

▶ Let A be some event with P(A) > 0

▶ The conditional PDF of X , given A, is the non-negative function
fX |A that satisfies

P(X ∈ B|X ∈ A) =

∫
B
fX |A(x)dx

for any subset B of the real line.

▶ If B is the entire line, then we have∫ ∞

−∞
fX |A(x)dx = 1

▶ So, fX |A(x) is a valid PDF.
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Conditional PDFs

▶ The event we are conditioning on can also correspond to a range of
values of our continuous random variable.

▶ Definition-

fX |{X∈A}(x) =


fX (x)

P(X ∈ A)
if X ∈ A

0 otherwise.

▶ In this case, we can write the conditional probability as

P(X ∈ B|X ∈ A) =

∫
B
fX |A(x)dx =

∫
B

fX (x)1(x ∈ A)

P(X ∈ A)
dx

=

∫
A∩B fX (x)dx

P(X ∈ A)
=

P({X ∈ A} ∩ {X ∈ B})
P(X ∈ A)

= P(X ∈ B|X ∈ A)

▶ This is a valid PDF–non-negative and integrates to one. Check?

17



Conditioning: memoryless property of the exponential

▶ X ∼ Exp(λ)

▶ P(X ≥ s + t|X ≥ s) =?

▶ Remember the exponential? FX (x) = 1− e−λx .

▶

P(X > s + t|X > s) =
P(X > s + t,X > s)

P(X > s)

=
P(X > s + t)

P(X > s)
=

e−λ(s+t)

e−λs

= e−λt = P(X > t)
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Conditional PDFs: Example
▶ The height X of a randomly picked american woman can be

modeled by X ∼ N(63.7, 2.72)

▶ Whats the conditional PDF given that the randomly picked woman
is at least 63 inches tall?

▶ The PDF of heights (X ) is shown in red.

▶ The conditional PDF given X > 63, shown in blue, is the same shape
for X > 63... but scaled up to integrate to one.
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Recap

▶ Last time, we introduced the idea of continuous random variables
and PDFs.

▶ A PDF is a function we can integrate over to get

P(X ∈ B) =

∫
B
fX (x)dx.

▶ We extended this to look at joint PDFs and conditional PDFs.

▶ We can borrow results from conditional probability and probabilities
of intersections!

▶ But we need to be careful to remember, a PDF is not a probability...

▶ Next time, we will continue looking at continuous probability
distributions.
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