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Roadmap

» Two random variables: joint distributions

> Joint pdf
> Joint pdf to a single pdf: Marginalization
» Conditional pdf
» Conditioning on an event
» Conditioning on a continuous r.v
» Total probability rule for continuous r.v's
» Bayes theorem for continuous r.v's
» Conditional expectation and total expectation theorem

» Independence

» More than two random variables.



Conditional PDFs—conditioning on an event

» For discrete random variables, we looked at marginal PMFs px (X),
conditional PMFs pX|Y(x\y), and joint PMFs px y(x,y).

> These corresponded to the probability of an event, P(A), the
conditional probability of an event given some other event, P(A|B),
and probability of the intersection of two events, P(AN B).

> We've looked at marginal PDFs, fx(x) and joint PDFs, fx y(x,y).

» These don't directly give us probabilities of events, but we can use
them to calculate such probabilities by integration.

» We can also look at conditional PDFs! These allow us to calculate
the probability of events given extra information.



Conditional PDFs

» Recall, the PDF of a continuous random variable X is the
non-negative function fy(x) that satisfies

P(X € B) = /B fx (x)dx

for any subset B of the real line.
> Let A be some event with P(A) >0

» The conditional PDF of X, given A, is the non-negative function
fX|A that satisfies

P(X € BIX € A) = /B | A (x)dx

for any subset B of the real line.
» If B is the entire line, then we have

oo
—0oQ

> So, fxja(x) is a valid PDF.



Conditional PDFs

> The event we are conditioning on can also correspond to a range of
values of our continuous random variable.

» Definition-

fx (x)

X ifXecA
fx|{xea}(x) = { Pxea) "7°C
0

otherwise.

> In this case, we can write the conditional probability as

_ [ fx0UxeA)

_ Janefx(x)dx _ P({X € A}n{X € B})
T P(XeA P(X € A)

=P(X e B|X € A)
» This is a valid PDF-non-negative and integrates to one. Check?




Conditioning: memoryless property of the exponential

> X ~ Exp(X)

> fx(x)= Xe ™ when x > 0, and zero otherwise.

> P(X>s+t|X>s)=?



Conditioning: memoryless property of the exponential

v

X ~ Exp(X)

v

fx(x) = Xe ™ when x > 0, and zero otherwise.

> P(X>s+t|X>s)=?

» Remember the exponential? Fx(x)=1- eV
P(X>s+1t,X>5)
X =
P(X >s+t|X >s) P(X > 5)
> P(X>s+1) e Mt
T OP(X>s) T eAs

—e M =pX>t)



Conditioning: memoryless property of the exponential

> X ~ Exp()\)
Xe™ M A(x—s)
> fxix>s(x) = § P(X >s) _
0 Otherwise

If x>s

> P(X>s+t|X>s)=?



Conditioning: memoryless property of the exponential

> X ~ Exp()\)
re M A(x—s)

fxx>s(x) = § P(X >s)
0 Otherwise

If x>s

v

> P(X>s+t|X>s)=?

AX

v

Remember the exponential? Fy(x)=1-—e

o0 o0 )\
P(X >s+tX >s)= / x| x>s(X)dx = ,\/ e Mx=9) gy
t s

s+ +t
o
= A/ e My =e M
t



Conditional PDFs: Example

» The height X of a randomly picked american woman can be
modeled by X ~ N(63.7,2.7%)

» Whats the conditional PDF given that the randomly picked woman
is at least 63 inches tall?

> The PDF of heights (X) is shown in red.
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Conditional PDFs: Example

>

The height X of a randomly picked american woman can be
modeled by X ~ N(63.7,2.7%)

Whats the conditional PDF given that the randomly picked woman
is at least 63 inches tall?

The PDF of heights (X) is shown in red.

The conditional PDF given X > 63, shown in blue, is the same shape
for X > 63... but scaled up to integrate to one.
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Conditioning on a different random variable

» So far, we conditioned X on an arbitrary event A, or on a range of
values of X.

P(X € B|A) = /B | a(x)dx

» We can also condition on the outcome of a second random variable
Y.

» We know we could condition on a range of outcomes of Y, by
replacing the arbitrary event A with the event {Y € A}

» What about conditioning on a specific value of Y = y?

> Even though any outcome Y =y has P(Y = y) =0, we know that
some value has to happen.
» Pick some number, say 0.6777, now generate 100 N(0, 1) random
variables. | will bet a 100$ that you won't see that number.
» But when you simulate from the standard normal, you will get a 100
different values, right?



Conditioning on a different random variable

g (x,¥)
fx,y(xy
f xly) = ——F——
X‘Y( | ) fY(y)
provided fy(y) > 0.
» What does this mean?
f(x, y)dxdy
f x|y)dx = ———~———
x|y (x1y) Fly)dy
> _ Px<X<x+dx,y<Y<y+dy)

P(y <Y <y+dy)
=Px<X<x+dxly<Y<y+dy)



Multiplication rule: Calculating the joint PDF

fx,y (x,y)
. . ) °
calculate the joint PDF from the conditional and the marginal PDF.

> e, fX7y(X,}/) = fX‘Y(Xb/)fY(Y)-

» We can use the same relationship, fX|y(x\y) =

» This is a PDF version of our multiplication rule.

» We can extend it to more than 2 random variables:

fX7Y,Z(X»y7Z) = fZ|X,Y(Z|X7)/)fY|X(}’|X)fX(X)



Lets remember all the rules

We've now got a lot of ways to go between our various PDFs!

> If we know fx y(x,y), we can get fx(x)
> How?

> If we know fx y(x,y) and fy(y), if fy(y) > 0 we can get fXIY(x|y)

> If we know fx(x) and fY‘X(y|x), we can get fx y(x,y)
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Lets remember all the rules

We've now got a lot of ways to go between our various PDFs!

> If we know fx y(x,y), we can get fx(x)
» How? marginalization! fx(x) :/ fx,v(x,y)dy

> If we know fx y(x,y) and fy(y), if fy(y) > 0 we can get fX|Y(x|y)

v (x,y)
fr(y)
> If we know fx(x) and fY‘X(y|x), we can get fx y(x,y)

> How? fx|y(x|y) =

» How? multiplication rule! fx,y(x,y) = fx(x)fyx(y[x)



Example: Calculating the conditional PDF

c ifo<x<land0<y<x

> Let £, x,y) =
X,y () {0 otherwise

» What is the conditional PDF of X given Y, fX|Y(x|y)?



Example: Calculating the conditional PDF

fo<x<land0<y<
> Let fy y(xy) =4 oo =rANARsYEX
’ 0 otherwise
» What is the conditional PDF of X given Y, fX|Y(x|y)?

» First things first... what is ¢? Well, what does our joint PDF look
like?

1
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Example: Calculating the conditional PDF

fo<x<land0<y<
> Let fy y(xy) =4 oo =rANARsYEX
’ 0 otherwise
» What is the conditional PDF of X given Y, fX|Y(x|y)?

» First things first... what is ¢? Well, what does our joint PDF look
like?

1

0

0 1

X

» The total area where 0 < x<1and 0<y <xis 0.5, s0o c =2.
» What is the marginal PDF of Y, fy(y)?



Example: Calculating the conditional PDF
1

Y (PP - A S
0 y
0 1

X

» To get the marginal PDF of Y, we take the joint PDF and
marginalize out X.

1 1
> fY(Y):/O fx,Y(Xy)/)dXZZ/O lo<x<1,0<y<xdx
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Y (PP - A S
0 y
0 1
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» To get the marginal PDF of Y, we take the joint PDF and
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1 1
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Example: Calculating the conditional PDF
1

—

O :

0 1
X

» To get the marginal PDF of Y, we take the joint PDF and
marginalize out X.

1 1
> fY(Y):/O fx,Y(Xy)/)dXZZ/O lo<x<1,0<y<xdx

:2/)(1: dx =2(1—y)

y
> So, the conditional PDF of X given Y =y is

1 .
ety (xly) = fx,y(y) iy ify<x<1
XY fy(y) 0 otherwise.



Total probability theorem for continuous random variables

» We know that conditional probabilities must obey the total
probability theorem.

» If By,...,Bn form a partition of Q, such that P(B;) > 0 for each i,
then for any event A,

P(A) = Z P(B;)P(A|B;)
» In terms of discrete r.v's we have:
P(X =x)=>_ P(X = x|B;)P(B;)
i

» How about continuous r.v.'s? Replace P(X = x|B;) by conditional
pdf.

fx (x) = Z fx|B;(x)P(Bi)



Bayes' law with continuous outcomes but discrete hidden
causes

» Sometimes our hidden cause is inherently discrete.
> e.g. | may be interested in whether | have flu or not — a binary
choice.
» My observation might be my temperature — a continuous random
variable.
> We want P(A|Y = y) = e.g. P(flulY =100)

> Pretend Y is a discrete r.v.

P(Y = y|A)P(A)

PAlY =y) = P(Y = y|A)P(A) + P(Y = y|AS)P(Ac)

All that changes for a continuous r.v. is:

o fy‘A(Y)P(A)
P(AlY =y) = fy|A(Y)P(A) + fy ac (y) P(A9)




Bayes' law with continuous outcomes but discrete hidden

causes

> The probability that anyone has flu (event A) is 20%.

Body temperature is Y.

Without flu, Y is a normal random variable with p = 98.6 degrees and o = .5.
With flu, Y is a normal random variable with ;=102 and o = 2.

My temperature is 100. If A is the event “has flu” and Y is temp.

vvyyy
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RGN T b Y
1 (v — 98.6)2
f - -
viaeW) = e P o s




Bayes' law with continuous outcomes but discrete hidden

causes
> The probability that anyone has flu (event A) is 20%.

»> Body temperature is Y.
» Without flu, Y is a normal random variable with p = 98.6 degrees and o = .5.
» With flu, Y is a normal random variable with 4 =102 and o = 2.
» My temperature is 100. If A is the event “has flu” and Y is temp.
_ 1 (y —102)
. fyialy) = N TEY
1 (v — 98.6)2
fy = -
viael) = ass P
>
PAIY = y) P(A)fy|a(y) fy1a(Y)P(A)
= y = =
A O) Py a0IPA) + Fy ac ) P(AY)
2
021 _,—(100-102)%/8
P(A]Y = 100) = 2v2n 0.65

0.22\1567(1007102)2/8 408 o—(100-98.6)2/0.5 -
T

1
0.5v2m



Continuous Bayes' rule

» Discrete X, Y.

P(Y = y|X = x)P(X = x)

> PXC=XY =) = 5= p (v = X = x)P(X = %)

> What is fy|y (x]y)?



Continuous Bayes' rule

» Discrete X, Y.

> P(X = XY = y) = P(Y = y|X = x)P(X = x)

2ox P(Y =y X =x)P(X = x)

> What is fy|y (x]y)?

 fyx () ix ()
> v = g O ()




Conditional Expectation

> When we were looking at discrete random variables, we looked at
conditional expectations.

> The conditional expectation, E[X]|A], of a random variable X given
an event A is the value of X we expect to get out, on average, when
A is true.

> We could calculate it by summing over all values x that X can take
on, and scaling them by the conditional PMF py4(x) = P(X = x|A).

E[XIAl = xpxja(x)



Conditional Expectation

» We can also look at the conditional expectation of a continuous
random variable.

(o9}
> If E[X] = / xfx (x)dx, what do you think the conditional
—0o0

expectation of X given some event A looks like?
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Conditional Expectation

> We can also look at the conditional expectation of a continuous
random variable.

(o9}
> If E[X] = / xfx (x)dx, what do you think the conditional
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> How about the conditional expectation of some function g(X) given
some event A?



Conditional Expectation

> We can also look at the conditional expectation of a continuous
random variable.

(o9}
> If E[X] = / xfx (x)dx, what do you think the conditional
—0o0

expectation of X given some event A looks like?

> E[X|A] = /:: xty a(x)dx

> How about the conditional expectation of some function g(X) given
some event A?

> ELeOOI = [ elfialads



Total expectation theorem

» More generally, if A1, Ay, ..., An are a partition of Q, we have a
continuous version of the total expectation theorem:

E[X] = P(A)EIX|A]
i=1

» Or, if we are conditioning on specific values Y =y,

ex] = [ O:O EIX|Y = yfy (v)dy



Conditional expectation

>

>
>

| am expecting an email, that will definitely arrive between midday
and 3pm.

Within a given hour (midday-1, 1-2, 2-3), each time is equally likely.
It is twice as likely to arrive between 1 and 2 as it is to arrive
between midday and 1.

It is twice as likely to arrive between 2 and 3 as it is to arrive
between 1 and 2.

What does the PDF look like?
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Conditional expectation

» | am expecting an email, that will definitely arrive between midday
and 3pm.

> Within a given hour (midday-1, 1-2, 2-3), each time is equally likely.

> It is twice as likely to arrive between 1 and 2 as it is to arrive
between midday and 1.

> It is twice as likely to arrive between 2 and 3 as it is to arrive
between 1 and 2.

» What does the PDF look like?

4c
2c I
c

12 1 2 3

» What is ¢?



Conditional expectation

» | am expecting an email, that will definitely arrive between midday
and 3pm.

> Within a given hour (midday-1, 1-2, 2-3), each time is equally likely.

> It is twice as likely to arrive between 1 and 2 as it is to arrive
between midday and 1.

> It is twice as likely to arrive between 2 and 3 as it is to arrive
between 1 and 2.

» What does the PDF look like?

4c
2c I
c

12 1 2 3

» Whatis c? 1/7



Conditional expectation

4/7

2/7
el

» | wait until 2pm. It still hasn't arrived. What is the expected value
of the arrival time?

» What is the expected time without any conditioning?



Conditional expectation

4/7
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e |l

» | wait until 2pm. It still hasn't arrived. What is the expected value
of the arrival time?

> What is the expected time without any conditioning?



Conditional expectation

4/7

2/7
e |l

» | wait until 2pm. It still hasn't arrived. What is the expected value
of the arrival time?
> What is the expected time without any conditioning?

> First, what is the conditional probability, fX|X>2(X)?



Conditional expectation

4/7

2/7
e |l

» | wait until 2pm. It still hasn't arrived. What is the expected value
of the arrival time?
> What is the expected time without any conditioning?

> First, what is the conditional probability, fX|X>2(X)?

p ) 1 if2<x<3
X) =
X|X>2 0 otherwise



Conditional expectation

4/7

2/7
e |l

» | wait until 2pm. It still hasn't arrived. What is the expected value
of the arrival time?

> What is the expected time without any conditioning?
> First, what is the conditional probability, fX|X>2(X)?

1 if2<x<3
0 otherwise

x| x>2(x) = {

0 3
> So, E[X|X > 2] :/ fo‘X>2(x)dx :/ xdx = 2.5.
—00 2



Conditional expectation

4/7

2/7
e

> What is the (unconditional) probability that X > 27



Conditional expectation

4/7

2/7
e

> What is the (unconditional) probability that X > 27

3
> P(X>2):/2 fx(x)dx = 4/7



Conditional expectation

4/7

2/7
e

> What is the (unconditional) probability that X > 27
3

> P(X >2)= / fx(x)dx = 4/7
2

1
> Similarly, P(X < 1) = / fx(x)dx = 1/7 and P(1 < X < 2) = 2/7.
0



Total expectation theorem
» What is the total expectation of X7



Total expectation theorem
» What is the total expectation of X7

> E[X]= /_o:o xfy (x)dx



Total expectation theorem
» What is the total expectation of X7
o0
> E[X]:/ xfy (x)dx
—0o0
> By the total probability theorem,

fx (x) =P(X < 1)fxj0<x<1(%)
+P(1 <X < 2)fx1<x<a(x) + P(X > 2)fx|x>2(x)



Total expectation theorem

» What is the total expectation of X7
o0
> E[X] = / xfy (x)dx
—0o0
> By the total probability theorem,
i (x) =P(X < D)fp<x<1(x)

+ P(1 < X < 2)fx1<x<a(X) + P(X > 2)fxx0(x)
» So, we can write the total expectation as

1 2
E[X] :/0 xP(X < 1)fx x<1(x) +/1 xP(1 < X <2)fx1<x<2(x)

3
+/2 xXP(X > 2)fx | x~2(x)
=EX|X <1]P(X <1)+ E[X[1 < X <2]P(1 < X <2)
+ E[X|X > 2]P(X > 2)
=0.5-1/7+1.5-2/7+25-4/7 = 27/14



Total expectation theorem: Example
» John's tank holds 15 gallons of gas, and he always refills his tank
when he gets down to 5 gallons.
» John's car gets 30MPG on average, with a standard deviation of
2MPG.
» | plan on borrowing John's car tomorrow. | don’t know how much
gas he will have. How far should | expect to be able to drive it?

> | want E[M].
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Let's set up some reasonable modeling assumptions.
Let G be the random volume of gas. Assume

fo(e) = 01 if5<g<15
Gl&) = 0 otherwise.
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Let M be the random number of miles. Assume M ~ N(30g, 4).
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Total expectation theorem: Example

>

>

vvyyvyy

John's tank holds 15 gallons of gas, and he always refills his tank
when he gets down to 5 gallons.

John's car gets 30MPG on average, with a standard deviation of
2MPG.

| plan on borrowing John's car tomorrow. | don't know how much
gas he will have. How far should | expect to be able to drive it?

Let's set up some reasonable modeling assumptions.
Let G be the random volume of gas. Assume

fc(g) =

01 if5<g<15
0 otherwise.

| want E[M].

Let M be the random number of miles. Assume M ~ N(30g, 4).
If we have exactly g gallons, what is E[M|G = g]? 30g

So, we can use the total expectation theorem to get:

00 15 215
E[M] = / E[M|G = glfc(g)dg = /5 30gx0.1dg = [1.5g°]5~ = 300
o0



Independent random variables

» For discrete random variables, we said two random variables X and Y
are independent if

px,y(x.y) =px(x)py(y)  Vx,y

> Just like in the discrete case, we say two continous random variables are
independent if
fx,y(y) =fx(X)fy(y)  Vxy

> If fy(y) > 0, this is the same as saying fx(x) = x|y (xly) = i.e. knowing
that Y =y doesn't tell us anything about X.

» Just like with discrete random variables, we if X and Y are independent
we have E[XY] = E[X]E[Y] and var(X + Y) = var(X) + var(Y).

» For two functions (X) and g(Y') we have
E[f(X)g(Y)] = E[f(X)]E[g(Y)]:



More than two random variables
» For multiple random variables we have:

P((X,Y,Z)e B)= / fx vy z(x,y,z)dxdydz
(xy.2)eB) =77

> Marginalization: fx y(x,y) =
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For multiple random variables we have:

P((X,Y,Z) € B) = /

(x.y,2)eB)
Marginalization: fx y(x,y) = /fX’y,Z(X,y, z)dz

Marginalization: fx(x) = //fX,Y,Z(Xv%Z)dy dz
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Conditional PDF: x|y, z(xly,2) = M, For fy 7(y,z) >0
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Multiplication rule:

fx.v,.z(xy, 2) = fx|y z(xly, 2)fy|z(y|2)fz(2), For fy z(y,z) >0
Independence: fx y 7(x,y,2) = fx(x)fy(y)fz(z) Forall x,y,z



More than two random variables

» For two random variables X, Y arising out of the same experiment,
we define their CDF as:

Fx,y(x,y)=P(X<x,Y <y)=

d?Fx y(x.y)
dx dy
> Let X and Y be jointly uniform on the unit square. Fx y(x,y) = xy
for0<x,y<1

> What is fx y(x,y)?. Differentiate! o (—( y))

> How do | get fx y(x,y) back? fx y(x,y) =

» This equals 1 forall 0 < x,y < 1!
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Practice problem

> Let Y = g(X) = X2. X is a random variable with a known PDF
fx(x). Whats the PDF of Y?

» Solution: See example 3.23 of Bertsekas and Tsitsiklis.



